
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023 2517

Cost-Efficient Sharing Algorithms for DNN
Model Serving in Mobile Edge Networks

Hao Dai , Jiashu Wu , Yang Wang , Jerome Yen, Yong Zhang , and Chengzhong Xu , Fellow, IEEE

Abstract—With the fast growth of mobile edge computing
(MEC), the deep neural network (DNN) has gained more opportu-
nities in application to various mobile services. Given the tremen-
dous number of learning parameters and large model size, the DNN
model is often trained in cloud center and then dispatched to end
devices for inference via edge network. Therefore, maximizing the
cost-efficiency of learned model dispatch in the edge network would
be a critical problem for the model serving in various application
contexts. To reach this goal, in this article we focus mainly on
reducing the total model dispatch cost in the edge network while
maintaining the efficiency of the model inference. We first study
this problem in its off-line form as a baseline where a sequence
of n requests can be pre-defined in advance and exploit dynamic
programming techniques to obtain a fast optimal algorithm in time
complexity ofO(m2n) under a semi-homogeneous cost model in a
m-sized network. Then, we design and implement a 2.5-competitive
algorithm for its online case with a provable lower bound of 2 for
any deterministic online algorithm. We verify our results through
careful algorithmic analysis and validate their actual performance
via a trace-based study based on a public open international mobile
network dataset.

Index Terms—Cost efficiency, deep neural network, mobile edge
computing, model sharing, online algorithm.

I. INTRODUCTION

W ITH the fast growth of smart devices and ubiquitous
sensors, massive amounts of data are being generated in

edge network [1]. Meanwhile, the exponential multiplication of
data is also driving the rapid development of the deep neural
network (DNN) model for wide uses in our daily lives [2],
[3], [4]. However, if such a large amount of data were always

Manuscript received 9 October 2022; revised 14 February 2023; accepted 17
February 2023. Date of publication 22 February 2023; date of current version 8
August 2023. This work was supported in part by the Key-Area Research and
Development Program of Guangdong Province under Grant 2020B010164002
and in part by the Science and Technology Development Fund of Macao S.A.R
(FDCT) under Grant 0015/2019/AKP. Recommended for acceptance by H.
Karatza. (Corresponding author: Yang Wang.)

Hao Dai, Jiashu Wu, Yang Wang, and Yong Zhang are with the Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen
518055, China, and also with the University of Chinese Academy of Sciences,
Beijing 100049, China (e-mail: hao.dai@siat.ac.cn; js.wu@siat.ac.cn; yang-
wang5@msn.com; zhangyong@siat.ac.cn).

Jerome Yen is with the Department of Computer and Information Science,
Faculty of Science and Technology, University of Macau, Taipa, Macau 999078,
China (e-mail: jeromeyen@um.edu.mo).

Chengzhong Xu is with the State Key Lab of IoTSc, Department of Com-
puter Science, University of Macau, Taipa, Macau 999078, China (e-mail:
czxu@um.edu.mo).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSC.2023.3247049, provided by the authors.

Digital Object Identifier 10.1109/TSC.2023.3247049

shipped to cloud center for model processing, traditional cloud
architecture would suffer from considerable challenges in com-
munication, storage, and computation [5]. Much worse, many
new types of applications (e.g., cooperative autonomous driving)
have fairly strict latency requirements, which would generate
an additional burden to the center. Therefore, an alternative
computational paradigm—mobile edge computing (MEC) [6],
[7], [8]—is advocated, which allows the deployment of the
computation in proximity to user equipment (UE) for the time
bounded responses [9]. With MEC, the DNN workloads can
be (partially) pushed to the edge of the cloud network, which
in turn could effectively mitigate the strict requirements on the
communication, and consequently, fully unleash the potentials
of edge computing for cost reduction [10], [11].

However, given the large number of model parameters, high
model computational loads, and heterogeneous capacities of
different computing platforms, fulfilling the requirements of
the DNN model processing in the edge network is not a trivial
matter [12]. First, for the mobile device, due to its constrained
resources [13] and finite amount of generated data, the model
training, in general, cannot be fully deployed on it. Second, for
the edge server, although installed close to users, its computa-
tional capacity is still relatively low, compared to the cloud,
to train the DNN models for serving, not only in terms of
efficiency but also in regards to coverage area. Therefore, fully
deploying DNN model to share in the edge servers, in our
opinion, is not always effective. Finally, for the cloud, it is
usually far from mobile devices and incurs long time latency
in its service path, which could compromise the quality of
time-bounded services. As such, given these issues, it is not
reasonable to place the entire DNN model computation in a sin-
gle place. Instead, we are in favor of combining the advantages
of both cloud and edge to collaboratively complete the DNN
task.

To address the foregoing issues, at present, the mainstream
of DNN deployment mode in the edge is so-called In-Cloud
Training and In-Edge Co-inference (ICIE), which means the
model training is accomplished in the cloud while the model co-
inference is conducted between the edge and mobile device [10],
[14]. This mode can work as part of the model serving process
with some distinct merits. On the one hand, given large compute
resources, the model can be continuously trained and updated in
the cloud based on the data generated from edges and devices. On
the other hand, the trained model can be dispatched to the MEC
server, which facilitates its download to the mobile device for
inference in two aspects: 1) the model cached in the MEC server

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1018-2162
https://orcid.org/0000-0002-1347-1974
https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0002-8730-3711
https://orcid.org/0000-0001-9480-0356
mailto:hao.dai@siat.ac.cn
mailto:js.wu@siat.ac.cn
mailto:yangwang5@msn.com
mailto:yangwang5@msn.com
mailto:zhangyong@siat.ac.cn
mailto:jeromeyen@um.edu.mo
mailto:czxu@um.edu.mo
https://doi.org/10.1109/TSC.2023.3247049

2518 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

can be effectively syned with the one in the cloud to ensure the
correct inference made by the devices; 2) the updated model can
be cached, replicated, and transferred between the MEC servers
in the edge network to support the model sharing between the
mobile users in a wide area.

Although it is crucial to the exploitation of the full strength
of DNN in a wide range of applications, the ICIE mode has not
been fully exercised or studied in existing solutions where the
mode is only used to dispatch the updated DNN directly from
the cloud center to the mobile terminals without resorting to the
edge network [15], [16], [17] or with the edge network, it is often
in lack of theoretical analysis on the service cost-efficiency [18],
[19].

In this paper, we intend to fill in void by studying from an
algorithmic point of view: how cost efficient it is for the model to
be dispatched from the cloud to multiple edge sites for inference,
which is defined in our context as a model sharing problem in
the edge network.

Superficially, the sharing problem described bears certain
similarities to the Content Delivery Network (CDN) [20], [21].
However, they have essential differences in several aspects. First,
the existing CDN solutions rarely take the interplay between the
edge servers and the cloud center into account, as well also lack
relevant theoretical analysis. Second, since the model performs
long-term training continuously based on newly generated data,
handling in-place updates is a crucial issue in the DNN model
sharing problem, which is often missing in conventional CDN
where the delivered contents are often static [22]. Since we
usually only share and update the serialization of model param-
eters, the transmission cost of this part is generally homogenous,
making this issue worth discussing separately from conventional
cache problems. Last, the mainstream CDN algorithms, espe-
cially for those learning-based algorithms [9], [18], [21], require
a lot of experience to train a scheduling model, resulting in bare
compatibility with generalized real-world scenarios. Given these
differences, the model sharing problem in our case is much more
complicated and imposed great challenges, compared to CDN.

In this paper, we study the model sharing problem based on
the ICIE deployment mode to maximize the cost-efficiency for
the DNN model serving in a crowd of geographically dispersed
mobile users. More specifically, we study the problem of sharing
a trained model, pulled from the cloud, in an edge network by
caching or transfer, with possible multiple copies, in a collection
of cache servers in the edge so that the overall cost of the time-
series requests to it is minimized. We investigate the sharing
problem in both off-line and online forms based on an often-used
semi-homogeneous cost model [23]—all pairs of cache nodes in
the edge network have the same transfer cost, but each cache
node has its own caching cost rate.1 The rationale behind this
model is that it is often adopted in the settings where the billing
rates of the edge resources are partially fixed across its different
edge servers in a region as studied in [6], [24].

The off-line form is defined to model the case that a stream of
requests to a shared model can be predicted prior to the sharing

1Note that the cost can be a very general concept, it can refer to the time
latency, monetary cost, or others, depending on how the cost is defined.

of the model. This is particularly true when some model is
accessed regularly among a set of network nodes. However, the
off-line form is usually ideal. A more practical situation is that
the request sequence is unpredictable. The online algorithm can
cope well with this case by serving the incoming requests in a
timely manner with minimum cost. In this paper, we first design
a fast optimal off-line algorithm for the predictable case and
then propose our 2.5-competitive online algorithm to tackle the
unpredictability in the more practical case. We provably achieve
these results with deep insights into the problem and careful
analysis of the solution algorithms. Note that our algorithms are
generic enough, it is not designed for any particular type of DNN
model, thus is applicable to all kinds of DNN models as long as
they can be stored in a data file (e.g., PMML [25] and PFA [26]).

In summary, we made the following contributions in this
paper:
� We present a dynamic programming-based optimal algo-

rithm for the model sharing problem that can minimize the
total transfer and caching costs within O(m2n) time for
the off-line case, here m represents the number of nodes in
the network, while n is the length of the request stream.

� Our online algorithm for this problem is designed by
extending the anticipatory caching idea [27] whereby a
2.5-competitive ratio as well as its tightness are also ob-
tained by giving a lower bound of the ratio as 2 for any
deterministic online algorithm.

� With the proposed off-line and online algorithms, we ex-
tend the synchronizing mechanism to support the active
model update from the cloud center, and show that the
extended mechanism does not impact the theoretical bound
of the algorithm.

� We validate our results through an intensive trace-based
empirical study, whose results reveal our algorithms are
cost-efficiently feasible and practical in reality.

The organization of the paper is as follows: we introduce
some background knowledge and related work regarding the
DNN model serving and the mobile edge network in Section II.
We describe the formulation and notation of the model sharing
problem in Section III and propose an off-line algorithm and
an online algorithm with their critical analysis in Section IV.
We present the simulation studies to validate our findings in
Section V, followed by the conclusion of the paper in the last
section.

II. BACKGROUND KNOWLEDGE

In this section, we introduce some background knowledge to
help understand our work, and then show the motivation of our
work.

A. DNN Model and its Serving

A deep neural network (DNN), as one of the most cutting-edge
machine learning techniques, is typically composed of multiple
layers between the input and output layers. It is often used to
mimic the workings of the human brain in processing data for
successful use in many applications, including object detection,
speech recognition, language translation, and decision making.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: DAI ET AL.: COST-EFFICIENT SHARING ALGORITHMS FOR DNN MODEL SERVING IN MOBILE EDGE NETWORKS 2519

Fig. 1. The architecture of model serving. The model source and storage,
allocated on edge servers, are requested by the UE, which leverages the current
model to make inferences based on the data from the data source. The model on
the edge servers is periodically synchronized with the one updated in the cloud.

A DNN model is fully characterized by its layer’s components,
in particular, the weight parameters.

In general, the DNN model applications consist of two phases:
model training and model serving. The model training in general
is a procedure in deep learning that creates a designed model
by estimating its parameters from a large number of training
samples and in our particular case it typically learns the weights
for each pair of connected neurons using some iterative meth-
ods [10].

In practice, the trained model is often recorded in standardized
document-based intermediate representation (i.e., PMML [25]
and PFA [26]) and then used to serve in data-processing context
by following a certain model serving framework as shown in
Fig. 1. The inputs of the serving framework are from two data
streams: one containing the data that needs to be scored, and the
other containing the model updates, which are either from the
model data blob itself or from the reference to the model data in
a database or a file system. The stream engine uses the current
model for the actual scoring in memory and delivers the scoring
results as inference outputs to its users. Since it is represented as
data rather than code, the DNN model in general and its weight
parameters in particular can be manipulated as a special type of
data, which is fundamental for our proposed algorithms.

B. Mobile Edge Network

The mobile edge network we considered is part of the cellular
network infrastructure as shown in Fig. 2 where the Radio
Access Network (RAN) covers a wide geographical area, which
is divided into a number of cells, each taking a base station (BS)
as a fixed access point to cover its mobile devices by translating
the radio signals into data packets, which are then routed through
the wired mobile backbone network (CN) to external packet
data networks (e.g., cloud data centers) via packet data network
gateway (P-GW). The inter-connected BSs are typically con-
nected to a Mobility Management Entity (MME) and a Serving
Gateway (S-GW) via different technologies. The MME is used to
handle the control information, including mobility management
and authentication functions, for the mobile terminals while the
S-GW is deployed to process the data information, such as data
packet routing/forwarding and handover management.

Fig. 2. Mobile edge network where MEC servers are integrated with RAN
to perform edge computing. The inter-connected BSs are connected to a Mo-
bility Management Entity (MME) and a Serving Gateway (S-GW) via different
technologies (e.g., microwave or landlines).

The mobile edge is created on the edge of the networking
infrastructure, where a number of MEC servers (also called edge
server or server thereafter) are deployed in close proximity of
the BSs, each being physically attached to one edge server that is
inter-connected with others via a Hub Node as shown in Fig. 2.

C. DNN Serving in Edge Network

The mobile-edge based infrastructure is aligned well with
the model serving framework. One can train the DNN model
in the cloud center and dispatch the trained model to the edge
servers, which are capable of manipulating it directly at the edge
network in terms of caching, replication and transfer with the
minimum service cost to serve the stream engine in each mobile
device. Note that this serving process is not a one-off, rather, it
is repeated when the model is updated in the cloud to adapt to
the new settings [28]. As such, the models cached in the edge
network, also in the mobile device, need to be synced with the
one in the cloud for the correctness of the inference.

Overall, the mobile edge can take the place of the cloud to
some extent to facilitate latency-sensitive services. Additionally,
the mobile edge can also interplay with the cloud to deliver cost
effective, ubiquitous and scalable mobile services for inference
applications. Consequently, the success of this computing mode
is largely dependent on the cost efficiency of sharing the model
among multiple edge sites for inference.

III. MODEL SHARING PROBLEM

In this section, we formulate the model sharing problem with
respect to the mobile edge network described in Fig. 2. To
this end, we first model the edge network into a system model
whereby the sharing problem is formulated based on a defined
cost model, and its complexity is also analyzed. For quick
reference, we summarize the frequently used symbols in Table
1 in Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TSC.2023.3247049.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSC.2023.3247049
http://doi.ieeecomputersociety.org/10.1109/TSC.2023.3247049

2520 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

A. System Model

As shown in Fig. 2, a mobile edge network is composed of m
networked edge servers S = {s1, . . . , sM} that can collaborate
with cloud center s0 to carry out well defined computational
tasks to serve a large number of mobile devices, connecting to
the eNodeB of a selected edge server.

In particular for the DNN model serving, according to the
ICIE deployment, the model training is conducted in the cloud
by periodically using the newly generated data, while the model
inference is accomplished by mobile devices. To this end, the
edge server in this deployment often acts as a dual role. On the
one hand, it communicates with the cloud to download (pull)
the updated model, and on the other hand, it works as a relay
cache server, which is used to cache and transfer the model
inside the network for its cost-efficient dispatch on demands to
mobile devices. The mobile device asks for the updated model by
sending syn-requests to a specific edge server in its own period.

As the billing rates of edge server vendors are currently fixed
in terms of network transmission2, in this paper, we regard the
transfer cost as a constant concerning the data size of the DNN
model. Therefore, in some realistic settings, we can simplify
the cost model to be semi-homogeneous, in which the transfer
cost and the pull cost are denoted as λ and β, respectively.
Furthermore, since deletion is instantaneous on the edge server,
we can assume that the deletion costs are trivial and can be
ignored in the system model.

Based on the defined cost model, we can explicitly define four
operations as well as their associate costs for the model sharing
in the edge network as follows:
� Caching: θs

m μmδti,j
=⇒ θs

m, δti,j = tj − ti, caching model
θ from sm from ti to tj .

� Transfer: θs
q λ
=⇒ θs

m, transferring model θ from server
sq to server sm while keeping the model at sq .

� Pull: θs
0 β
=⇒ θs

m, pulling model θ from cloud center s0

to server sm.
� Deletion: θs

m 0
=⇒ sm, removing model θ at sm.

As thus, the edge servers in the network can receive n random
syn-requests, each being made at any time instance, denoted as
R = {r0, . . . , rn}, where request ri = (ei, ti), ei ∈ S, repre-
sents that ri is made from server ei at time ti. Thus, for a request
sequence as shown by black dots in Fig. 3, the four operations
are combined to serve it: a) caching the model on edge server
(black line); b) transferring the model to other edge servers (blue
line); c) pulling the updated model from the cloud (red line); d)
deleting the model from edge servers (vertices at the end of each
horizontal Line).

B. Problem Formulation

With the system model, we can further describe how to
formulate the sharing problem with an attempt to reduce the
sharing cost through scheduling in the sequel.

2Say, the cost model from Bell Network charges $0.3078 for transferring
1GB over its OC3 link [29]

Fig. 3. An example of a standard schedule for a pre-defined request sequence.
The black dots represent requests, and the black lines represent caching that
end on request, while the blue and red lines represent transferring and pulling,
respectively. .

1) Schedule Model: As stated above, our target is to combine
a set of defined operations for each server to manipulate the
model along the time line so that all the requests are satisfied
with minimal cost. We name such a set as a schedule, which is
defined as follows:

Definition 1 (Schedule). A schedule P is any set of caches,
transfers, and pulls satisfying: 1) the synchronization service is
available for ri = (ei, ti), 0 ≤ i ≤ n; 2) The transferring and
caching only happen when there is at least one edge server
caching the updated model and running the synchronization
service at any time instance. Otherwise, a pulling is incurred.

By following the method in [30], we also describe the sched-
ule using a space-time diagram, where the edges are caching
intervals, transferring, or pulling, and the vertices are requests,
endpoints of either transferring or pulling. More formally, we
have

Definition 2 (Space-Time Graph). We define a space-time
graph as a weighted directed graph G = (V,E,W). The vertex
set is denoted by V = {vmi | 0 ≤ m ≤ M, 0 ≤ i ≤ n}, where
vertex v ∈ {vmi | ri ∈ R, ei = sm} corresponds to request ri
made on edge server sm at time ti, vertex v ∈ {vmi | ri /∈
R, ei = sm} denotes transfer vertex and v ∈ {v0i | 0 ≤ i ≤ n}
represents pull vertex. The edge set E consists of three subsets:

1) a set of cache edges EC = {(vmj , vmj) | 0 ≤ i < j ≤
n, 1 ≤ m ≤ M};

2) a set of transfer edges ET = {(vqi, vmi), (vmi, vqi) | 0 ≤
i ≤ n,m �= q, and sq, sm ∈ S}, and

3) a set of pull edges EP = {(v0i, vmi) | 0 ≤ i ≤ n, 1 ≤
m ≤ M}.

Combined with the cost model, the edge weights W can be
defined as W (e) = λ for edges e ∈ ET , W (e) = μm(tj − ti)
for edges (vmi, vmj) ∈ EC , and W (e) = β for edges e ∈ EP .

Based on the defined space-time graph, we can make an
observation by following the same arguments in [30] that each
schedule instance has a standard form, which is defined as
follows.

Observation 1 (Standard Form). For any instance of the
graph, there exists at least one optimal schedule in which every
transfer and pull occurs at a request time ti with its output ends
on edge server ei.

Fig. 3 shows a standard form schedule in a space-time dia-
gram, where all the transfers (white dots) and pulls (red dots)
connecting with the requests (black dots) at different edge

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: DAI ET AL.: COST-EFFICIENT SHARING ALGORITHMS FOR DNN MODEL SERVING IN MOBILE EDGE NETWORKS 2521

servers. By this example, one can see that the DNN model
sharing problem is equivalent to finding a standard-form tree
in its off-line or online fashion to serve all the requests made
along timeline at the minimum cost on space-time graph G.

2) Formulation and Complexity: Given a scheduleP in stan-
dard form, we can regard its cost as the sum of the edge weights of
the standard form tree. According to the definition of the space-
time graph, the cost of a scheduling P = {EC ∪ ET ∪ EP } can
be denoted as:

C(P) =
∑

(vmi,vmj)∈EC

μm(tj − ti) +
∑

(vmi,vqi)∈ET

λ

+
∑

(v0i,vmi)∈EP

β (1)

Note that there could be many feasible schedules for request
sequence R, we use Γ to represent the feasible schedules for up
to ri. The goal of our problem is to find an optimal schedule P∗,
which can be formalized as follows:

P∗ = argmin
P∈Γ

{C(P)} (2)

This problem is solvable in polynomial time, and we will give
a polynomial optimal algorithm in the next section. However, its
general form with heterogeneous cost model is a variant of the
rectilinear Steiner tree problem [31] and the rectilinear Steiner
arborescence problem [32], both of them are NP-complete. Thus,
it is believed that the model sharing problem is still NP-complete,
but its formal proof is still open [33]. Moreover, due to the lack of
prior knowledge about the request sequence in the online form,
designing a reliable online algorithm with the heterogeneous
cost model is also barely achievable.

Notably, the proposed model is generic enough to adapt to
other appropriate machine learning models than DNN.

IV. SHARING ALGORITHMS

Given the problem definition, in this section we investigate the
sharing algorithm for both off-line and online cases. The off-line
algorithm targets the scenario in which the request sequence is
highly predictable from history and can be available in advance
while in the online case the requests are usually not predictable
and the algorithm for this case is more realistic.

A. An Optimal Off-Line Algorithm

First, given the standard form of schedules, we can define
sub-schedule as follows:

Definition 3 (Sub-Schedule). The sub-scheduleP(j) of P is
a schedule for rj that consists of the set of caching intervals,
transferring and pulling from P required to satisfy all requests
r0, . . . , rj .

Note that the sub-schedule P(j) of the optimal schedule P
may not be an optimal schedule for {r0 . . . rj}, and it may not
be unique.

Based on the concepts presented above, we can further make
an analysis of this problem and then derive our optimal algo-
rithm. To this end, we first obtain a lower bound on the marginal
costs to satisfy each individual request, which is defined by

Definition 4 (Marginal Cost Bound). The marginal
cost bound of request ri on sm is bi = min{αλ + (1−
α)β, μjδp(i),i}, 1 ≤ i ≤ n, here, α = 1 or 0, depending on
whether or not there is an updated model kept in the group of
edge servers.

Given the marginal cost bound, we further have a lower bound
on the total costs to satisfy a request sequence, which is defined
by

Definition 5 (Running Bound). The running bound of the
marginal costs up to request i is Bi =

∑i
j=1 bj .

As a result, for a segment of the request sequence from rj to
ri, its running bound of the marginal costs can be computed as
Bi −Bj , denoted by Bj

i in the sequel.
Definition 6 (Optimal Cost C(i)). We define C(i), 0 ≤ i ≤

n, is the cost of the optimal schedule S∗. When t = t0, it is
necessary to pull the model from the cloud to serve r0, so the
cost of r0 must be β, i.e., C(0) = β.

Our goal is to create a recurrence for C(i) that we can solve
dynamically. To this end, by analyzing the standard form of the
schedule, we can immediately derive the optimality of the trivial
case when the last request is served by pulling from s0(cloud
center).

Lemma 1. IfP∗ is an optimal schedule in which the last opera-
tion is a pulling, thenP(i−1) is an optimal schedule up to request
ri−1 (i.e.,P(i−1) ⊂ P∗), and we have C(i) = C(i− 1) + β.

Proof. If the optimal P∗ ends in a pulling, we can directly
derive the optimality of P(i−1) since in this case caching cost is
more expensive than β.

We now consider the other two non-trivial cases, that is, ri is
served either by transferring or caching. In these cases, the last
transferring or caching involved to serve ri may impact all the
requests made in the caching interval since a caching is extended
from its starting point to ti which allows the requests to re-adjust
the sources of the model (e.g., a caching may be changed to
transferring for cost reduction). As a consequence, no request
rj , 0 < j < i is guaranteed to be optimal for the sub-schedule
of P(i) with respect to the interval [t1, ti−1]. To deal with this,
we define two auxiliary recurrences that help compute C(i).

Definition 7 (Semi-Optimal Cost T (i) and D(i)). We define
T (i) and D(i) to be the semi-optimal cost of a schedule P(i)

that ri is served by transferring and caching on edge server ei,
respectively. Clearly, C(i) ≤ T (i) and C(i) ≤ D(i).

The basic idea of auxiliary recurrence is to establish the
relationships between C(i), certain T (j) and certain D(j) that
has been available, or vice versa, whereby the most recent C(i)
can be computed. To this end, we also define the following
concepts in our algorithm design.

Definition 8 (Feeding Set). For each request ri,
we define its feeding set as F(i) = {rj |ej �= ei, tj <
ti, and rj is the most recent request on ej}.

That is, F(i) is composed of the most recent requests on
each edge server except ei. F(i) designates the set of candidate
models that could be used to satisfy ri via a transfer in the

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

2522 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Fig. 4. The examples of the case when κj ≤ j and κj > j. The final caching
H(ei, tp(i), ti) impacts the serving path (shown in bold blue line) of the requests
[tp(i), ti−1] in both cases. The cycled vertices represent the requests in F(i).
(a) κj ≤ j. (b) κj > j.

optimal schedule. Given F(i), we further define cover index set
and pivot index for each element in F(i) as follows,

Definition 9 (Cover Index Set). We define the cover index set
πj(i) with respect to each rj ∈ F(i) as

πj(i) = {k|H(ek, tpk
, tk), pk < j ≤ k < i} (3)

here,H(ek, tpk
, tk) represents a caching from tpk

to tk on server
ek.

Definition 10 (Pivot Index). The pivot index κj for rj ∈ F(i)
is defined by either 0 or the maximum in πj(i), depending on
whether or not πj(i) = ∅, i.e.,

κj =

{
max{πj(i)} πj(i) �= ∅

0 otherwise
(4)

The definition of κj �= 0 is important as it signifies the last re-
quest in [tj , ti−1] that is served by the cachingH(eκj

, tp(κj), tκj
)

other than the transfer from H(ei, tpi
, ti), which forms the basis

for the C(i) recurrences. We distinguish two cases: 1) κj ≤ j,
and 2) κj > j, rj ∈ F(i). The first is the boundary case, as
illustrated in Fig. 4(a), which is trivial.

Lemma 2. For the pivot index κj , rj ∈ F(i) as defined in
Definition 10, if κj ≤ j then the optimal restricted cost T (i) =
C(j) + min(μj , μi)δj,i + λ +Bj

i−1.
Proof. C(j) is the minimal cost of satisfying all requests up

to tj . The cost of serving rj at tj is min(μj , μi)δj,i + λ, and
with the caching involved we can satisfy all requests {rk | j <
k < i} by transferring and short caching intervals with a cost of
Bj

i−1. Since the cost of this path is a lower bound of serving these
requests, the total cost is optimal under the stated conditions of
the lemma.

Now let’s examine the case that κj > j. In this case, both
H(eκj

, tp(κj)
, tκj

) and H(ei, tj , ti) are in the final schedule as
shown in Fig. 4(b), then we have

Lemma 3. For κj as defined in Definition 10, if κj �= 0 then
the optimal restricted cost

T (i) = D(κj) + min(μj , μi)δj,i + λ +B
κj

i−1 (5)

Proof. We can construct a schedule up to rκj
that ends up

with a caching. Since D(κj) is a lower bound on the cost of this
schedule, we have D(κj) ≤ C(P(κj)). Since B

κj

i−1 is a lower
bound on adding the requests between tκj

and ti−1, and we
must add min(μj , μi)δj,i to cover the interval [tj , ti]. Then, we
see that D(κj) + min(μj , μi)δj,i +B

κj

i−1 ≤ C(i).

Fig. 5. The examples of the trivial case when κp(i) ≤ p(i) and the non-trivial
case when κp(i) > p(i)(π(i) �= ∅). The final caching H(ei, tp(i), ti) impacts
the serving path (shown in bold blue line) of the requests [tp(i), ti−1] in both
cases. (a) κp(i) ≤ p(i). (b) κp(i) > p(i).

If we start with a restricted optimal schedule to rκj
with

cost D(κj), then we can similarly construct a restricted sched-
ule with a transferring from tj to ti to serve ri at the cost
of D(κj) + min(μj , μi)δj,i + λ +B

κj

i−1, which is greater than
C(i), and then conclude the lemma.

By combining these lemmas, we enumerate all the request
indexes on the interval [tp(i), ti−1] to derive T (i) recurrence as
follows:

T (i)=

⎧⎪⎨
⎪⎩
+∞ −m ≤ i ≤ 0

λ + min
rj∈F(i)

{
C(j) + min(μj , μi)δj,i +Bj

i−1

min
k∈πj(i)

{D(k)+min(μj , μi)δj,i+Bk
i−1}

(6)
Now we establish the relationships between D(i) and certain

C(κj) that have been available. To reach this goal, we first define
πp(i)(i) and κp(i) concerning rp(i), as special cases of Defini-
tions 9 and 10. Afterward, as with the case in computing theT (i)
recurrences, we also distinguish two cases: 1) κp(i) ≤ p(i), and
2) κp(i) > p(i). As the same, the first case is the trivial boundary
case, and an illustrative example of the trivial case is shown in
Fig. 5(a).

Lemma 4. For the pivot index κp(i) ≤ p(i), the optimal re-

stricted cost D(i) = C(p(i)) + μiδp(i),i +B
p(i)
i−1 .

Proof. We can conclude this lemma by following similar
arguments in the proof of Lemma 2.

Now we examine the non-trivial case that κpi
> pi. In this

case, both H(eκp(i)
, tp(κp(i)), tκp(i)

) and H(ei, tp(i), ti) are in
the final schedule, as illustrated in Fig. 5(b). Then we have

Lemma 5. For any κp(i) �= 0, the optimal restricted cost
D(i) = D(κp(i)) + μiδp(i),i +B

κp(i)

i−1 .
Proof. We can conclude this lemma by following the argu-

ments in Lemma 3.
By combining the two lemmas above, we enumerate all the

request indexes in interval [tp(i), ti−1] to deriveD(i) recurrence:

D(i) =

⎧⎪⎪⎨
⎪⎪⎩
+∞ −m ≤ i ≤ 0

min

⎧⎨
⎩
C(p(i)) + μiδp(i),i +B

p(i)
i−1 1 ≤ i ≤ n

min
j∈πp(i)(i)

{D(j) + μiδp(i),i +Bj
i−1}

(7)
Since unit cost μi is heterogeneous on different edge servers,

we find a particular case that the request is served by the path
transferring twice. Specifically, we let smin denote the edge

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: DAI ET AL.: COST-EFFICIENT SHARING ALGORITHMS FOR DNN MODEL SERVING IN MOBILE EDGE NETWORKS 2523

Fig. 6. The examples of the cases when rj is served by transferring or caching
(a) and served by double-transferring (b), there are specific paths to serve ri.
In case (a), ej transfers the model to smin at first, and then smin caches it for
a period at the cost of H(smin, tj , ti) before being transferred to ei. In case
(b), smin keeps caching for a period at the cost of H(smin, tj , ti) and then
transfers model to ei. (a) The case when rj is served by transferring. (b) The
case when rj is served by double-transferring.

server with the minimum unit cost. The specific route is to
transfer the model from ej to smin at first and then transfer
it to ei at the time of ti to serve ri, as shown in Fig. 6(a). For
convenience, we call such routes “double-transferring.”

For double-transferring, we can define Semi-Optimal Cost
E(i) for it as well, and establish its relationship with the C(i),
T (i) and D(i) by the following lemma.

Lemma 6. For some rj ∈ F(i), ei = smin and ej �= smin,
the optimal restricted cost E(i) = min(T (j), D(j)) + 2λ +
μminδj,i +Bj

i−1.
Proof. Since μi is heterogeneous, we can construct a case

of μjδj,i > λ + μminδj,i. In this case, we have C(j) + 2λ +
μminδj,i < C(j) + λ + μiδj,i. Therefore, T (i) is greater than
E(i). Similarly, we can prove that C(j) + 2λ + μminδj,i <
C(j) + μiδj,i, D(i) is greater than E(i).

E(i) can be directly superimposed on the new path based on
D(j) or T (j) when ei �= smin and ej �= smin. Besides, there
is another special case when rj is served by E(j), as shown in
Fig. 6(b). In this case, E(i) = E(j) + λ + μminδj,i +Bj

i−1.
Given these analyses, we can complete the recurrence for E(i)

as follows,

E(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ −m ≤ i ≤ 0

min
rj∈F(i)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(T (j), D(j)) + 2λ + μminδj,i
+Bj

i−1 ej �= smin, ei �= smin

E(j) + λ + μminδj,i +Bj
i−1

ej �= smin, ei �= smin

C(j) + λ + μminδj,i +Bj
i−1

ej = smin

C(j) + μminδj,i +Bj
i−1

ei = smin

(8)
Given these considerations, we can complete the recurrence

for C(i) in terms of the T (i), D(i) and E(i) as follows,

C(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β i = 0

min

⎧⎪⎪⎨
⎪⎪⎩

T (i) 1 ≤ i ≤ n
D(i)
E(i)
C(i− 1) + β

(9)

Algorithm 1: OTSharing-v1 Algorithm.

After considerable analysis, we have the following theorem
for our proposed algorithm.

Theorem 1. Given the semi-homogeneous cost model, the
recurrence algorithm can correctly compute the minimum cost
of the off-line DNN model sharing problem, with the time
complexity of O(m2n).

Proof. The correctness proof can be directly obtained by
combining Lemmas 2 to 6. And during the next pass over
the requests to compute the recurrences, these pointers can
be used to precisely identify each of the intervals required by
(6)–(9) in O(m2), O(m), O(m) and O(1) time, respectively, on
the per-request basis, thus taking at most O(m2n) time for n
requests.

B. 2.5-Competitive Online Algorithm

In this section, we give a 2.5-competitive algorithm for the
online version of this problem. The basic idea is to serve the next
request by keeping an updated model on server ej for a period of
time. As the same in the off-line case, each request can be served
by three methods: caching, transferring, and pulling. Besides, we
can decompose the problem into each edge server to accomplish
the global solution. Since there are two different cost variables
λ and β, without loss of generality, we will discuss and design
the online algorithm in three cases: 1) β ≤ λ; 2) λ < β ≤ 2λ;
and 3) β > 2λ.

1) Case 1: β ≤ λ: In this case, the request won’t be served
by transferring. Instead, the optimal solution will consist of only
caching and pulling. Therefore, we merely need to make a trade-
off between caching and pulling costs. When the cost of caching
is greater than pulling, the algorithm will retrieve the model from
the cloud to the edge server.

Theorem 2. Algorithm 1 is 2-competitive.
Proof. a) If Δt ≤ β

μi
, request ri is served by caching in both

the optimal solution (represented by Optimal in the sequel) and
Algorithm 1, as illustrated in Fig. 7(a). The competitive ratio

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

2524 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Fig. 7. In case (a), the request is served by caching; in case (b), the request is
served by pulling.

Fig. 8. In case (a), the request is served by caching; in case (b), the request is
served by transferring; in case (c), the request is served by pulling.

(denoted by c.r. in the sequel) is

c.r.(a) =
ALG

OPT
=

μiΔt

μiΔt
= 1 (10)

b) If Δt > β
μi

, request ri is served by pulling with a cost β
in both Optimal and Algorithm 1. After that, edge server ei will
cache the updated model with an extra cost β (Fig. 7(b)). Thus,
the competitive ratio is

c.r.(b) =
ALG

OPT
=

β + β

β
= 2 (11)

For all requests in R, the whole competitive ratio is

C.R.=

∑k1 μiΔt+
∑k2(β+β)∑k1 μiΔt+

∑k2 β
=1+

k2β

k1μiΔt+k2β
≤ 2

(12)
here, k1 and k2 represent the number of instances of each

case.
2) Case 2: λ < β ≤ 2λ: When μjΔt ≤ λ, it’s evident that

serving request by caching is the optimal choice; When Δt
increases to μjΔt > λ and multiple active models are present,
the serving cost would be less costly by transferring than by
caching. Meanwhile, when there are no other updated models,
the best solution is the same as Algorithm 1: request ri should be
served by pulling. Therefore, the improved algorithm is shown
in Algorithm 2.

Theorem 3. Algorithm 2 is 2-competitive.
Proof. a) If Δt ≤ λ

μi
, request ri is served by caching in both

Optimal and Algorithm 2 (Fig. 8(a)), c.r.(a) is

c.r.(a) =
ALG

OPT
=

μiΔt

μiΔt
= 1 (13)

b) If Δt > λ
μi

, and there are updated models on other edge
servers, the Algorithm 2 still caches the model with a cost λ at
first, then serves this request by transferring, while the previous
caching is wasted. By contrast, the optimal choice is serving
this request by transferring without caching, whose cost is λ

Algorithm 2: OTSharing-v2 Algorithm.

(Fig. 8(b)). Thus, c.r.(b) is

c.r.(b) =
ALG

OPT
=

λ + λ

λ
= 2 (14)

c) In the case of c = 0, it’s evident that the request is served
by pulling, and the last active model has been held with a cost β.
On the contrary, Optimal would serve request by pulling without
any caching (Fig. 8(c)), indicating c.r.(c) is

c.r.(c) =
ALG

OPT
=

β + β

β
= 2 (15)

For all requests in R, the whole competitive ratio is

C.R. =

∑k1 μiΔt+
∑k2(λ + λ) +

∑k3(β + β)∑k1 μiΔt+
∑k2 λ +

∑k3 β

= 1 +
k2λ + k3β

k1μiΔt+ k2λ + k3β
≤ 2 (16)

3) Case 3: β > 2λ: When c = 1, Algorithm 2 will store the
model with a cost of β on edge server ei. And it will serve
the request by pulling if the next request time is expired. When
β ≤ 2λ, pulling is guaranteed to be the optimal solution, but
when β > 2λ, due to μi �= μj , the performance of Algorithm 2
is going to be terrible.

As shown in Fig. 9, when Δt = β
μj

±Δt′, the optimal route

for any edge server ej(ej �= smin)) would be: transfer the model
to the server with the minimal caching cost rate, cache the

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: DAI ET AL.: COST-EFFICIENT SHARING ALGORITHMS FOR DNN MODEL SERVING IN MOBILE EDGE NETWORKS 2525

Fig. 9. A new optimal solution in case 3. In the case (a), Δt = β
μj

+Δt′; in

the case (b), Δt = β
μj

−Δt′. The optimal solutions are green routes.

Algorithm 3: OTSharing-v3 Algorithm.

model until the subsequent request, and then serve the request by
transferring. Let α = μmin

μmax
, the competitive ratio of Algorithm

2 in this case will be

lim
α→0,Δt′→0

2β

2λ + αβ + μminΔt′
=

β

λ
. (17)

Since β > 2λ, Algorithm 2 cannot give a constant upper bound
of the competitive ratio. To address this issue, we propose a new
bounded online algorithm (Algorithm 3) as follow.

Fig. 10. Two different cases when c = 1. The red line represents the schedule
of the online algorithm. In case (a), the next request is coming before the active
model on smin expired while opposite in case (b).

The major difference between Algorithms 2 and 3 lies in the
condition of deleting the models from edge servers. In Algorithm
3, The only model left will be held with a cost of 2λ on ej , and
then transferred to smin and maintained there with another cost
of β − 2λ.

Theorem 4. Algorithm 3 is 2.5-competitive.
Proof. a) When c �= 1, the competitive ratio of Algorithm 3

is as the same as Algorithm 2, which is at most 2;
b) When c = 1 andΔt ≤ 2λ

μi
, the request is served by caching,

which has been proved optimal.
c) When c = 1 and 2λ

μi
< Δt ≤ 2λ

μi
+ β−2λ

μmin
(Fig. 10(a)), the

cost of algorithm is:

ALG = 2λ + λ + λ + (β − 2λ − μminΔt′) (18)

As illustrated in Fig. 10(a), there are three potential optimal
solutions in this case: solution(a), solution(b) and solution(c).
The competitive ratio is

c.r. =
ALG

min{cost(a), cost(b), cost(c)}

= max

{
ALG

cost(a)
,
ALG

cost(b)
,
ALG

cost(c)

}
(19)

ALG

cost(a)
=

2λ + λ + λ + (β − 2λ − μminΔt′)
λ + λ + 2λ

μmax
μmin + (β − 2λ − μminΔt′)

< lim
(β−2λ−μminΔt′)→0,α→0

ALG

cost(a)
=

4λ

2λ
= 2 (20)

ALG

cost(b)
=

2λ + λ + λ + (β − 2λ − μminΔt′)
β

≤ lim
Δt′→0

ALG

cost(b)
= 1 +

2λ

β
< 2 (21)

ALG

cost(c)
=

2λ + λ + λ + μmin(
β−2λ

μmin
−Δt′)

2λ + μmax(
β−2λ

μmin
−Δt′)

< lim(
β−2λ

μmin
−Δt′

)
→0

ALG

cost(c)
=

4λ

2λ
= 2 (22)

For all the potential optimal solutions, we proof the compet-
itive ratio satisfies that: c.r.′ < 2, hence c.r. = max(c.r.′) < 2
is proved.

d) When c = 1 and Δt > 2λ
μi

+ β−2λ

μmin
(Fig. 10(b)), the cost of

the algorithm is:

ALG = 2λ + λ + β − 2λ + β (23)

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

2526 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

As the same as case c), there are also three potential optimal
solutions in this case: solution(a), solution(b), and solution(c).
For solution(a),

cost(a) = λ + λ +
2λ

μmax
μmin + β − 2λ > β, (24)

for solution(b), cost(b) = β. And for solution(c), we have

cost(c) = 2λ + μmax
β − 2λ

μmin
> β (25)

Apparently, the optimal solution is solution(b) with the min-
imum cost β. Therefore, the competitive ratio is :

c.r. =
2λ + λ + β − 2λ + β

β
= 2 +

λ

β
< 2 +

λ

2λ
= 2.5

(26)
To sum up, for all the requests in R, the overall competitive

ratio is

C.R. =

∑k1 μiΔt+
∑k2(λ + λ) +

∑k3(β + β)∑k1 μiΔt+
∑k2 λ +

∑k3 β +
∑k4 β

+

∑k4(2λ + λ + β − 2λ + β)∑k1 μiΔt+
∑k2 λ +

∑k3 β +
∑k4 β

=
(2k1μiΔt+ 2k2λ + 2k3β + 2k4β) + k4λ − k1μiΔt

k1μiΔt+ k2λ + k3β + k4β

≤ 2 +
k4λ − k1μiΔt

k4β + k1μiΔt

≤ 2 +
1
2k4β − k1μiΔt

k4β + k1μiΔt

= 2.5− 3(k1μiΔt)

2(k4β + k1μiΔt)
≤ 2.5 (27)

Besides, we analyze the lower bound of this online problem
closely and introduce the following theorem:

Theorem 5. The competitive ratio of the online DNN model
sharing problem is at least 2 for any deterministic online algo-
rithm.

Proof. Assume there is an adaptive adversary that produces
a synchronization request sequence and tries to mislead the
online algorithm and make its competitive ratio worse. For any
deterministic online algorithm A, the adversary can construct
a sequence to counter the online algorithm. To construct the
worst case, we assume that all the requests occur on smin. In
this case, all algorithms could only lever caching and pulling to
serve requests instead of transferring.

It is reasonable to assume the caching cost of A is h after
the i-th request is satisfied, and the adversary makes a follow-up
request at time h

μmin
+ τ , where τ is a very tiny interval. When

h < β, we have:

c.r. =
h+ β

h
>

2h
h

= 2 (28)

Similarly, when h ≥ β, we have:

c.r. =
h+ β

β
≥ 2β

β
= 2 (29)

Let hs be any caching cost ofA after request ri is satisfied in the
case h < β, and hl for h ≥ β correspondingly. Suppose there
aremhs andnhl for a request sequenceR, then the competitive
ratio is:

C.R. =

∑m(β + hs)+
∑n(β+hl)∑m(hs)+
∑n(β)

≥
∑m(β+hs) + 2nβ∑m(hs) + nβ

>
2mhs + 2nβ

mhs + nβ
>

2mhs + 2nhs

mhs + nhs
= 2 (30)

In summary, we construct a worst-case where any online algo-
rithm cannot attain a competitive ratio of more than 2. Therefore,
we declare that the lower bound on the problem is 2, as well as
conclude the theorem.

This theorem shows the high values of our algorithm in
practical uses.

C. Cloud-Edge Model Synchronization

According to the system model, the cloud center would
proactively notify an edge server to download the latest updated
model for serving its syn-requests upon the completion of its
training phase. In this section, we will introduce how to extend
the off-line and online algorithm to support such update requests.

1) Preliminary: For a periodically updated model, we can
specify the proactive notifications issued by the cloud center
as a notification sequence, denoted by U = {u1,u2, . . .,uk},
where notification ui is made by the cloud center s0 at time
instance ti. The notified server first pulls the updated model
from the cloud, then passes it to other servers via transferring to
serve the requests from mobile devices in the sequel.

2) Extended Off-Line Algorithm: Note that all requests, as
well as updates, are given in advance, in the off-line mode. Given
the deduced update sequence U , we can derive an optimal off-
line algorithm to support the updates based on the proposed
off-line algorithm in Section IV-A.

As the same as ri, ui = (ei, ti), ei represents the server that
needs to be updated, and ti denotes the corresponding time. It is
natural to assume that there is an update u0 before the request
sequence R. And R can be divided into multiple sub-sequences
combined with the update sequence. The request sequence with
updates can be denoted as follow:

R∪ U = {u0, r0, . . ., ru1
} ∪ {u1, ru1+1, . . ., ru2

}
∪ · · · ∪ {uk, . . ., rn}

To deal with the request sequence with updates in off-line form,
an intuitive and reasonable idea is to leverage the proposed
off-line algorithm on each sub-sequence separately, which ob-
viously leads to the optimal solution. Therefore, the extension
of the off-line algorithm is to decompose the request sequence
concerning the update time and solve the sub-sequence sepa-
rately.

3) Extended Online Algorithm: In the online version, it is
reasonable to assume that updates only occur on servers with ac-
tive caches for the availability guarantee. Besides, this assump-
tion would not affect the discussion in terms of the competitive
ratio.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: DAI ET AL.: COST-EFFICIENT SHARING ALGORITHMS FOR DNN MODEL SERVING IN MOBILE EDGE NETWORKS 2527

Fig. 11. When the update operation occurs on sq , the models on other edge
servers (sm, sk) will be deleted, and the subsequent requests on other edge
servers are satisfied via transferring or pulling.

We make the following extension to the online algorithm
to handle updates: once the update operation occurs on sq ,
the algorithm must expire other stored models on edge servers
(sm �= sq) right now. As shown in Fig. 11, the stored model on
sm and sk should be deleted when the update has happened on
sq .

Theorem 6. The extended online algorithm with update op-
eration is 2.5-competitive.

Proof. In the case of c = 1, since the cost of deleting is neg-
ligible, the update operation brings barely any extra cost when
there is only one active cache. In contrast, it is a non-trivial case
when c �= 1, because the occurred updating results in deleting
on c− 1 active servers, bringing about a change in the cost
of subsequent requests. It can be found that when subsequent
requests are supposed to be served by caching, inserting an
update operation would force them to be served by transferring
or pulling. Analyses conducted on caching in this case is shown
as follow:

c.r. =
λ − μiΔt′ + λ

λ
< lim

Δt′→0

λ − μiΔt′ + λ

λ
=

2λ

λ
= 2

(31)
here, Δt′ is the offset between the time updating occurred and
the time the cache should be deleted originally. Note that the
update does not affect the cost of this algorithm when c = 1.
And the competitive ratio of the algorithm when c �= 1 has been
proved to be less than 2. Thus, the competitive ratio of the entire
algorithm is still 2.5.

In summary, by considering the pulling and transferring op-
erations in the model sharing problem, we discussed the rela-
tionships between β and λ and proposed online algorithms for
three cases, respectively. We also analyzed and proved that the
presented algorithms could achieve a competitive ratio of 2.5,
even combined with update operations.

V. EVALUATION

We conducted experiments to evaluate the actual performance
of the designed algorithms and validate the proposed theorems.
The simulator efficiently implements the proposed algorithms
and the model upon which the algorithms are built.

A. Experimental Setup

We investigated a practical scenario where the user per-
forms DNN inference (e.g., image recognition, voice input, etc.)
through a mobile device while the DNN training is deployed
in the cloud center. When users need to update the model,

they can synchronize it through edge servers provided by the
cloud service provider (e.g., Amazon Web Services, AWS3).
Considering the charging mechanism of cloud service providers,
we hope to turn down the model serving service when there is
no user synchronization to reduce storage and communication
costs.

Dataset. We adopted a public open international mobile net-
work dataset as the experimental trace data [34]. The dataset
tracks mobile users’ access to web services and is collected
by the MONROE platform spanning six countries, 27 mobile
network operators, and 120 measurement nodes. We sampled
7000 records from it to simulate the model synchronizations.
As a simulation of workloads, we leveraged the CIFAR-10 [35]
as the training and test dataset.

Baselines. For convenience, we named the proposed off-
line and online algorithms as DTSharing and OTSharing, re-
spectively, and compared them with the off-line Greedy and
online Active Caching with 3-competitive ratio (AC3) algo-
rithms developed in [36]. In particular, we used UOTShar-
ing to denote the OTShring algorithm with an active up-
date mechanism. To this end, we stipulated that the training
and updates of the DNN model are performed every 500 re-
quests. In addition, we took a DNN model ResNet50 as the
workload.

Parameters. We took the billing policy of AWS as a reference
to model the cache cost of servers. For instance, “m4.xlarge”
costs 48¢ per hour (i.e., 0.8¢ per minute) [37]. Therefore, we
set the unit cache cost of edge servers as a uniform distribution
μi U [0.4, 1.6]. Similarly, we made AWS data transfer price as
the cost of data transmission in the simulation, which takes
approximately 14¢ per GB transfer out to the Internet and 6¢ per
GB between regions within Asia [38]. The size of a pre-trained
ResNet50 model is 102 MB, which means that the transmission
and pull costs are approximately 1.4¢ and 0.6¢ respectively
(β = 1.4, λ = 0.6).

Moreover, we defined the performance ratio as ρ =
C(A/)C(DTSharing), which is used to measure the cost-
efficiency of algorithms. Obviously, the lower the performance
ratio (approx to 1) of an algorithm, its cost is more approx to
the optimal (i.e., the cost of DTSharing), which indicates better
performance.

Regarding the hardware of the platform, we treated Raspberry
Pi 4b as the edge servers, Tesla-V100 as the cloud center, and
leveraged PyTorch for DNN training and inference.

B. The Off-Line Algorithm

To validate the correctness and performance of the off-line
algorithm, we designed a greedy algorithm Greedy as a baseline
for comparison. The main idea of the greedy algorithm is to start
with the last request of all edge servers and find a path with the
lowest cost as the solution. The time complexity of the greedy
algorithm is O(mn).

First, we investigated the performance of DTSharing and
Greedy by calculating the performance ratio, which is defined

3https://aws.amazon.com

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

2528 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Fig. 12. Performance of the compared algorithms.

Fig. 13. Distribution of the speedup ratio of the greedy algorithm, representing
the comparison of the running time of the two algorithms. The x-axis is the
speedup ratio, and the y-axis is the density of the speed ratio.

by the cost of Greedy over the cost of DTSharing. As shown
in Fig. 12(a), in all our experiments with different model sizes,
the performance ratios are more significant than 1, indicating
DTSharing is better than Greedy. Moreover, the ratio of Greedy
gradually rises with the increase of the model size, indicating that
the performance of Greedy gets worse as the model increases.

Afterward, we compared the running time of the algorithms
and took the speedup ratio (i.e., the running time of DTSharing
over the running time of Greedy) as a metric. To this end, we
sampled the request sequence to investigate that the running
time varies with the number of sampled requests (n) with an
increment of every 100 samples. As shown in Fig. 12(b), the
running times of both algorithms grow up linearly with the
increasing number of requests, which is consistent with the
complexity we analyzed.

Since the number of edge servers (m) is fixed, the speedup
ratio of the greedy algorithm should be a constant from our
proposition in complexity analysis. The distribution of the
speedup ratios is demonstrated in Fig. 13, which is circa 15×,
implying that the speedup ratio is stable even though the number
of requests is changed. This illustrates that DTSharing only takes
a constant multiply of the time over Greedy to attain the optimal
solution.

C. The Online Algorithm

With the optimal cost achieved by DTSharing, we studied
the cost-efficiency of both OTSharing and UOTSharing. We
first investigated the impact of different DNN models, then

Fig. 14. Performance ratio changes with respect to different model sizes. A
lower ratio is better than a higher one, implying more cost-efficient.

Fig. 15. The cost of request sequence is changed with respect to model size in
different algorithms. The total cost consists of three parts–caching, transferring,
and pulling cost, and the breakdowns of each bar correspond to these three parts
from the bottom to the top.

examined their performance by changing the model size from
50 MB to 300 MB, and letting λ and β vary with the model size
correspondingly.

As shown in Fig. 14, the performance ratios of the compared
algorithms increase moderately but eventually flatten out as the
DNN model size grows. This observation is consistent with our
expectation that the performance ratios gradually converge to a
constant, demonstrating that the online algorithm’s competitive
ratio (performance ratio) is bounded. Meanwhile, it is worth
noting that the performance of OTSharing is always slightly
better than AC3 (the lower, the better). Regarding the descent
issue of the UOTSharing’s performance as the model size in-
creases, we speculated that since the period pulling brought by
the update sequence, the costs of transfer and pull are increased
correspondingly. For deep insight, we decomposed the cost
composition of different algorithms as shown in Fig. 15.

The bar diagram in Fig. 15 illustrates how the cost is profiled
for all the investigated algorithms. We can find that a large model
would lead to a significant increase in the proportion of pulling
and transferring in UOTSharing, which is consistent with our
speculation. On the contrary, the edge servers perform pulling
barely in OTSharing, and cache cost accounts for a higher pro-
portion than other algorithms. Due to the total cost of OTSharing

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: DAI ET AL.: COST-EFFICIENT SHARING ALGORITHMS FOR DNN MODEL SERVING IN MOBILE EDGE NETWORKS 2529

Fig. 16. The number of requests to retrieve the newest trained ResNet50 model,
and the corresponding accuracy of the retrieved models on CIFAR-10 in different
algorithms.

being the lowest, the cache in OTSharing is significantly more
cost-efficient.

Despite reducing the use of pulling results in higher cost
efficiency, the frequency of model updating is also reduced,
which would affect the accuracy of the inference. To compare
the accuracy of baselines, we constructed an experiment by
leveraging ResNet50 [39] to classify the CIFAR-10 dataset. To
emulate the ICIE architecture, we opted to attach a photo to each
request for inference. Afterward, devices transmit the photo to
the cloud center, where the pre-trained ResNet-50 resides. The
GPU trains one epoch with every 500 new data pieces (500
requests) received. Upon completion of the training, the updated
model can be retrieved by means of a pull, resulting in improved
accuracy compared to the outdated model in practice.

The numerical results are shown in Fig. 16. First, we in-
vestigated the number of requests retrieved after the current
latest model was constructed, which means that these requests
occurred after a pull and before the next training. As illustrated
in Fig. 16(a), it is evident that all the requests in UOTSharing
can be satisfied by the latest model, while OTSharing almost
takes the expired model. As such, an intuitive and reasonable
conjecture is that the accuracy of OTSharing should be lower
than others, and UOTSharing should exhibit the best. This
conclusion is confirmed by Fig. 16(b). Although the accuracies
of the algorithms are the same initially, with the leverage of the
pull, the accuracy of UOTSharing is significantly higher than
the others. Therefore, it can be concluded that the UOTSharing
with the update mechanism is superior to AC3 in terms of cost
efficiency and model update frequency (which directly affects
the accuracy).

VI. RELATED WORK

Currently, many mainstream model serving platforms (e.g.,
TensorFlow Serving [15], SageMaker [16], and DLHub [17]) fo-
cus mainly on serving the inference tasks by efficiently schedul-
ing server-side resources [15], [16], [17]. In contrast, we con-
centrate on model sharing in this paper, which is often dedicated
to model serving for providing mobile users with on-demand
model inference-based applications in a cost-efficient way. Liu
et al. [40] studied federated reinforcement learning in a cloud
robotic system by using model sharing to achieve knowledge
transfer among different robots. In contrast, Jiang et al. [41]

presented a model sharing framework in the edge to facilitate
cross-domain object detection in autonomous driving. Though
oriented to the edge, unlike this study, we paid more attention
to exploiting the edge server as a cache in a cost-efficient way,
rather than computing resources as mentioned in [40], [41].

In comparison to our work, some studies also take the net-
worked edge servers as caches for data or knowledge shar-
ing. For example, Guo et al. [42] developed an intelligence-
sharing vehicular network for sharing the knowledge acquired
from DNN in MEC-enabled vehicular networks. As with our
serving framework, the network can transfer the established
model trained at the cloud center to the edge servers if nec-
essary. However, most of these studies mainly focus on the
mechanism of model sharing, instead of the cost issue we
concerned.

In spirit, the model sharing in our problem has some sim-
ilarities with the data sharing in CDN [20]. Huang et al. [43]
formalized the data sharing problem as a multiple Connected Fa-
cility Location problem [44] and developed a 6.55-approximate
algorithm to solve the fairness of this problem while Luo et
al. [45] studied the problem in edge settings, and proposed an
approximate balanced greedy algorithm to make the content
distribution more balanced. Both algorithms are off-line, each
with its own goal, lacking the notion of online for cost reduction
as in our case.

Wang et al. [30] proposed a homogeneous cost model for
data sharing in the cloud, thereby presenting an efficient off-line
optimal algorithm and a 3-competitive online algorithm to re-
duce the overall sharing cost. We improved their cost model to
a semi-homogeneous one whereby the model sharing, together
with its off-line and online algorithms for cost reduction, is de-
ployed in the edge network. In addition, to adapt the algorithms
to the model sharing scenario, we took both pulling and update
mechanisms into account, making the problem more compli-
cated than the previous. On this basis, we designed an online
algorithm that is better than the original (lower competitive ratio)
and conducted experimental comparisons.

In addition to the foregoing related studies, there are also
some learning-based methods, which focus on the problem
related to ours [18], [19], [46], [47]. For example, Yang et
al. [46], [47] proposed a multi-task framework to address the
resource allocation and offloading decision issues in the MEC
networks. However, these methods are beyond the scope of our
consideration as they cannot provide theoretical guarantees for
the performance to deal with our sharing problem.

VII. CONCLUSION

In this paper, we investigated the cost-efficient model sharing
algorithms for the DNN serving in the edge network. We first
formulated the problem and analyzed its complexity. Then based
on a semi-homogeneous cost model, we proposed a O(m2n)
(which can be reduced to O(m logm n) with a well-designed
data structure) optimal algorithm for its off-line case and a
2.5-competitive algorithm for its online case, respectively. To
evaluate the quality of the competitive ratio, we also proved
a lower bound of 2 based on the same cost model for any

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

2530 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

deterministic online algorithm. We also considered the up-
date operations and designed off-line and online algorithms
supporting the update mechanism. We achieved these results
with our in-depth insights and careful analysis of this problem.
Finally, we validated our algorithms through a trace-based simu-
lation study. Again, although the DNN is a concern in this paper,
the proposed algorithms are generic and simple enough to adapt
to other appropriate content delivery-like scenarios.

In summary, the off-line algorithm is optimal in service cost
minimization but only practical in some instances, while the
online algorithm is sub-optimal but more practical in reality.
In addition, Although both off-line and online algorithms are
efficient, they are under global control, which could be deemed
as the major limitation in the current design. We plan to design
the distributed version in our near future work. Meantime, to
align with the characteristics of DNN training, we are also
contemplating an integration of a penalty mechanism into the
synchronization process, with the aim of increasing accuracy
while preserving the cost of the end devices.

REFERENCES

[1] G. Huang, C. Luo, K. Wu, Y. Ma, Y. Zhang, and X. Liu, “Software-defined
infrastructure for decentralized data lifecycle governance: Principled de-
sign and open challenges,” in Proc. Int. Conf. Distrib. Comput. Syst., 2019,
pp. 1674–1683.

[2] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender
system: A survey and new perspectives,” ACM Comput. Surv., vol. 52,
no. 1, 2019, Art. no. 5.

[3] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen, “Con-
vergence of edge computing and deep learning: A comprehensive survey,”
IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904, Second Quarter
2020.

[4] J. Wu, H. Dai, Y. Wang, Y. Zhang, D. Huang, and C. Xu, “PackCache:
An online cost-driven data caching algorithm in the cloud,” IEEE Trans.
Comput., early access, 2022, doi: 10.1109/TC.2022.3191969.

[5] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-aware
dynamic service placement for mobile edge computing,” IEEE J. Sel. Areas
Commun., vol. 36, no. 10, pp. 2333–2345, Oct. 2018.

[6] M. Du, Y. Wang, K. Ye, and C. Xu, “Algorithmics of cost-driven compu-
tation offloading in the edge-cloud environment,” IEEE Trans. Comput.,
vol. 69, no. 10, pp. 1519–1532, Oct. 2020.

[7] X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning for per-
vasive edge computing: A decentralized computation offloading algo-
rithm,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 411–425,
Feb. 2021.

[8] X. Xia, F. Chen, Q. He, J. C. Grundy, M. Abdelrazek, and H. Jin, “Cost-
effective app data distribution in edge computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 1, pp. 31–44, Jan. 2021.

[9] H. Peng and X. Shen, “Multi-agent reinforcement learning based resource
management in MEC- and UAV-Assisted vehicular networks,” IEEE J.
Sel. Areas Commun., vol. 39, no. 1, pp. 131–141, Jan. 2021.

[10] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,” Proc.
IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[11] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 1423–1431.

[12] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
AI: Intelligentizing mobile edge computing, caching and communica-
tion by federated learning,” IEEE Netw., vol. 33, no. 5, pp. 156–165,
Sep./Oct. 2019.

[13] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen, “TOFFEE:
Task offloading and frequency scaling for energy efficiency of mobile
devices in mobile edge computing,” IEEE Trans. Cloud Comput., vol. 9,
no. 4, pp. 1634–1644, Fourth Quarter 2021.

[14] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204–2239,
Nov. 2019.

[15] Tensorflow, “Tensorflow serving,” [EB/OL], 2021. [Online]. Available:
http://tensorflow.org/

[16] Amazon, “Amazon sagemaker,” [EB/OL], 2021. [Online]. Available: https:
//aws.amazon.com/sagemaker/

[17] R. Chard et al., “DLHub: Model and data serving for science,” in Proc.
Int. Parallel Distrib. Process. Symp., 2019, pp. 283–292.

[18] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman, “RL-Cache:
Learning-based cache admission for content delivery,” IEEE J. Sel. Areas
Commun., vol. 38, no. 10, pp. 2372–2385, Oct. 2020.

[19] C. Cho, S. Shin, H. Jeon, and S. Yoon, “TTL-based cache utility maximiza-
tion using deep reinforcement learning,” in Proc. IEEE Glob. Commun.
Conf., 2021, pp. 1–6.

[20] G. Tang, K. Wu, and R. Brunner, “Rethinking CDN design with distributee
time-varying traffic demands,” in Proc. Conf. Comput. Commun., 2017,
pp. 1–9.

[21] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video caching
at network edge: A multi-agent deep reinforcement learning approach,” in
Proc. Conf. Comput. Commun., 2020, pp. 2499–2508.

[22] T. Taleb, P. A. Frangoudis, I. Benkacem, and A. Ksentini, “CDN slicing
over a multi-domain edge cloud,” IEEE Trans. Mobile Comput., vol. 19,
no. 9, pp. 2010–2027, Sep. 2020.

[23] Y. Wang, H. Dai, X. Han, P. Wang, Y. Zhang, and C.-Z. Xu, “Cost-driven
data caching in edge-based content delivery networks,” IEEE Trans. Mo-
bile Comput., vol. 22, no. 3, pp. 1384–1400, Mar. 2023.

[24] M. Eriksson, “Cost modelling of edge compute,” in The Edge Event,
Sep. 2020.

[25] R. Pechter, “What’s PMML and what’s new in PMML 4.0?,” ACM
SIGKDD Explorations Newslett., vol. 11, pp. 19–25, 2009.

[26] J. Pivarski, C. Bennett, and R. L. Grossman, “Deploying analytics with
the portable format for analytics (PFA),” in Proc. 22nd ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2016, pp. 579–588.

[27] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on Markov
decision process,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1272–1288,
Jun. 2019.

[28] L. Bottou and Y. Le Cun, “Large scale online learning,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2004.

[29] A. Mehta, W. Tarneberg, C. Klein, J. Tordsson, M. Kihl, and E. Elmroth,
“How beneficial are intermediate layer data centers in mobile edge net-
works?,” in Proc. IEEE 1st Int. Workshops Found. Appl. Self* Syst., 2016,
pp. 222–229.

[30] Y. Wang, S. He, X. Fan, C. Xu, and X.-H. Sun, “On cost-driven collabora-
tive data caching: A new model approach,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 3, pp. 662–676, Mar. 2019.

[31] M. R. Garey and D. S. Johnson, “The rectilinear steiner tree problem is
NP-complete,” SIAM J. Appl. Math., vol. 32, pp. 826–834, 1977.

[32] W. Shi and C. Su, “The rectilinear Steiner arborescence problem is NP-
complete,” SIAM J. Comput., vol. 35, pp. 729–740, 2005.

[33] X. Xia, F. Chen, Q. He, J. C. Grundy, M. Abdelrazek, and H. Jin, “Cost-
effective app data distribution in edge computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 1, pp. 31–44, Jan. 2021.

[34] A. S. Khatouni et al., “An open dataset of operational mobile networks,” in
Proc. 18th ACM Symp. Mobility Manage. Wireless Access, 2020, pp. 83–
90.

[35] K. Alex and G. Hinton, “Learning multiple layers of features from tiny
images,” University of Toronto, 2009.

[36] Y. Wang, S. He, X. Fan, C. Xu, J. Culberson, and J. Horton, “Data caching
in next generation mobile cloud services, online vs. off-line,” Proc. 46th
Int. Conf. Parallel Process., 2017, pp. 412–421.

[37] L. N. Hyseni and A. Ibrahimi, “Comparison of the cloud computing
platforms provided by Amazon and Google,” in Proc. Comput. Conf.,
2017, pp. 236–243.

[38] A. W. Services, “Amazon cloudfront pricing,” [EB/OL], 2021. [Online].
Available: https://aws.amazon.com/cloudfront/pricing/

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[40] B. Liu, L. Wang, and M. Liu, “Lifelong federated reinforcement learning:
A learning architecture for navigation in cloud robotic systems,” IEEE
Robot. Automat. Lett., vol. 4, no. 4, pp. 4555–4562, Oct. 2019.

[41] X. Jiang, F. R. Yu, T. Song, Z. Ma, Y. Song, and D. Zhu, “Blockchain-
enabled cross-domain object detection for autonomous driving: A model
sharing approach,” IEEE Internet Things J., vol. 7, no. 5, pp. 3681–3692,
May 2020.

[42] J. Guo, W. Luo, B. Song, F. R. Yu, and X. Du, “Intelligence-sharing vehic-
ular networks with mobile edge computing and spatiotemporal knowledge
transfer,” IEEE Netw., vol. 34, no. 4, pp. 256–262, Jul./Aug. 2020.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TC.2022.3191969
http://tensorflow.org/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/cloudfront/pricing/

DAI et al.: DAI ET AL.: COST-EFFICIENT SHARING ALGORITHMS FOR DNN MODEL SERVING IN MOBILE EDGE NETWORKS 2531

[43] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair caching algorithms
for peer data sharing in pervasive edge computing environments,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 605–614.

[44] C. Swamy and A. Kumar, “Primal-dual algorithms for connected facility
location problems,” Algorithmica, vol. 40, pp. 245–269, 2004.

[45] G. Luo et al., “Software-defined cooperative data sharing in edge com-
puting assisted 5G-VANET,” IEEE Trans. Mobile Comput., vol. 20, no. 3,
pp. 1212–1229, Mar. 2021.

[46] B. Yang, X. Cao, C. Yuen, and L. Qian, “Offloading optimization in edge
computing for deep-learning-enabled target tracking by internet of UAVs,”
IEEE Internet Things J., vol. 8, no. 12, pp. 9878–9893, Jun. 2021.

[47] B. Yang, X. Cao, J. Bassey, X. Li, and L. Qian, “Computation offloading
in multi-access edge computing: A multi-task learning approach,” IEEE
Trans. Mobile Comput., vol. 20, no. 9, pp. 2745–2762, Sep. 2021.

Hao Dai received the MSc degree in communication
and electronic technology from the Wuhan University
of Technology, in 2017. He is currently working
toward the PhD degree with the Shenzhen Institute
of Advanced Technology, Chinese Academy of Sci-
ences. His research interests include cloud comput-
ing, Big Data processing, mobile edge computing
systems.

Jiashu Wu received the BSc degree in computer sci-
ence and financial mathematics & statistics from the
University of Sydney, Australia, in 2018, and the M.IT
degree in artificial intelligence from the University
of Melbourne, Australia, in 2020. He is currently
working toward the PhD degree with the University of
Chinese Academy of Sciences (Shenzhen Institute of
Advanced Technology, CAS). His research interests
include Big Data and cloud computing.

Yang Wang received the BSc degree in applied math-
ematics from the Ocean University of China, in 1989,
the MSc degree in computer science from Carlton
University, in 2001, and the PhD degree in computer
science from the University of Alberta, Canada, in
2008. He is currently with the Shenzhen Institute
of Advanced Technology, Chinese Academy of Sci-
ences, as a full professor and with Xiamen University,
China as an adjunct professor. His research interests
include service and cloud computing, programming
language implementation, and software engineering.

He is an Alberta Industry R&D associate (2009–2011), and a Canadian Fulbright
scholar (2014–2015).

Jerome Yen received the PhD degree in systems
engineering and management information systems
from the University of Arizona. He is now a dis-
tinguished professor with the Department of Com-
puter and Information Science, Faculty of Science
and Technology, University of Macau, China. Prior to
his current post, he was a professor with Accounting
and Finance Department, Tung Wah College, and a
honorary professor with the Department of Electri-
cal and Electronic Engineering, University of Hong
Kong. His main research interests include financial

engineering, investment management, market and credit risk management,
financial product development, trading strategies, and hedge funds.

Yong Zhang received the PhD degree from the De-
partment of Computer Science and Engineering, Fu-
dan University, in 2007. He is now a professor with
SIAT, CAS, honorary professor with the University of
Hong Kong. Before joining SIAT, he worked as post-
doctoral fellow and senior researcher with TU-Berlin
and HKU. He has published more than 100 papers
in refereed journals and conferences. His research
interests include design and analysis of algorithms,
combinatorial optimization, and wireless networks.

Chengzhong Xu (Fellow, IEEE) received the BSc
and MSc degrees from Nanjing University, in 1986,
and 1989, respectively, and the PhD degree from the
University of Hong Kong, in 1993, all in computer
science and engineering. Currently, he is a chair pro-
fessor of computer science and the dean with the Fac-
ulty of Science and Technology, University of Macau,
China. His recent research interests include cloud
and distributed computing, systems support for AI,
smart city, and autonomous driving. He has published
more than 400 papers in journals and conferences. He

serves on a number of journal editorial boards and the chair of IEEE TCDP from
2015 to 2020.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on September 15,2023 at 07:29:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

