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Abstract—File system metadata is the data in charge of maintaining namespace, permission semantics and location of file data

blocks. Operations on the metadata can account for up to 80% of total file system operations. As such, the performance of metadata

services significantly impacts the overall performance of file systems. A large-scale distributed file system (DFS) is a storage system

that is composed of multiple storage devices spreading across different sites to accommodate data files, and in most cases, to provide

users with location independent access interfaces. Large-scale DFSs have been widely deployed as a substrate to a plethora of

computing systems, and thus their metadata management efficiency is crucial to a massive number of applications, especially with the

advent of the Big Data age, which poses tremendous pressure on underlying storage systems. This paper reports the state-of-the-art

research on metadata services in large-scale distributed file systems, which is conducted from three indicative perspectives that are

always used to characterize DFSs: high-scalability, high-performance, and high-availability, with special focus on their respective major

challenges as well as their developed mainstream technologies. Additionally, the paper also identifies and analyzes several existing

problems in the research, which could be used as a reference for related studies.

Index Terms—High-availability, high-performance, high-scalability, large-scale distributed file system, metadata management
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1 INTRODUCTION

WITH the rapid growth of Big Data applications, current
computing architectures pose new challenges to stor-

age systems in terms of scale and performance require-
ments. For example, in Big Data applications such as those
in health [1], traffic [2], and financial [3], the scale of data is
usually in the order of terabytes (TB), petabytes (PB), or
even exabytes (EB). Therefore, a large quantity of storage
resources is needed to store and manage the data.

Moreover, a large number of data analysis tasks require
low-latency access to the data across different storage

servers, which also poses high requirements for the reading
and writing speeds of the storage system. This is especially
important to distributed file systems (DFSs) as it has become
one of the most effective ways to manage Big Data storage
by its simplicity and versatility. Some typical application
scenarios of DFS are Big Data processing (e.g., HDFS [4],
GFS [5]), high performance computing (HPC) (e.g., Lus-
tre [6], Spectrum Scale [7], BeeGFS [8]), and Web applica-
tions (e.g., CephFS [9], GlusterFS [10]). Therefore, to support
the massive data storage and computation requirements, as
well as hardware optimization, efficient data organization
and management is also one of the key technologies that
must be considered.

1.1 Metadata Workloads

File system metadata is a special kind of system data that
describes the structural characteristics of file system, not
only including its type, size, state (superblocks), but also
maintaining the access rights, owner, creation/update time
as well as the data block information with respect to each
file and directory. The play of a file system typically
involves frequent operations on the metadata to facilitate its
normal data access operation. Let us take the example
in [11] to illustrate, in which a one-block sized file (e.g.,
/foo/bar) from an inode-based file system is opened, read
and then closed. The entire process is depicted in Table 1
where a bunch of read operations caused by the open take
place to locate the inode of the file bar, whereby the file
read operation is performed by first consulting the inode,
then reading the block, and finally updating the inode’s
last-accessed-time field with a write. Note that this example
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is just reading in a small file from disk, which involves a rela-
tively large number of metadata operations. The life would
be evenworsewhenwriting out a file.With this example one
can understand that 50% to 80% of accesses to the file system
are made on metadata although it only accounts for a rela-
tively small portion of 0.1% to 1% of the entire data space [12],
[13]. As file systems have evolved, research on metadata has
constantly been conducted along the way. For example, Out-
sterhout et al. [13] analyzed characteristics of the UNIX 4.2
BSD file system access patterns by recording user-level activ-
ities, and found that more than 50% of all file accesses are
made to themetadata. Agrawal et al. [14] also conducted sim-
ilar research, where they collected and analyzed the meta-
data access snapshots of more than 10,000 file systems from
Windows Desktop machines during the period between
2000 and 2004. They found some file types have a strong tem-
poral tendency in terms of popularity and namespace usage,
as well as file size changes. A similar phenomenon has also
been discovered in recent work by Leung et al. [15]. Based on
the trace data fromNapApp, they analyzed how themetadata
is searched in large-scale storage systems from two perspec-
tives. From the user’s point of view, the behavior of a meta-
data search is mainly reflected in the following aspects: 1) for
the refinement of results, more than 95% of searches are
made for multiple metadata attributes; 2) about 33% of
searches are limited to a related area of the namespace,
reflecting the fact that files are usually organized by a seman-
tic organization; and 3) nearly 25% of searches that users
think are important involve multiple versions of metadata,
mainly from “back-in-time” searches that users make to
understand the file access trends.

Alternatively, from the perspective of the accessed meta-
data, its patterns also reflect the characteristics of the user’s
search behavior: 1) Spatial locality: refers to the attribute val-
ues of files gathered in the namespace. For example, John’s
files are mostly located under the /home/john subtree,
rather than being scattered throughout the namespace; 2)
Skewness: The value of metadata has a high degree of skew-
ness, meaning that the distribution of these values is not sym-
metrical, and some prevalent metadata values occupy most
of the value space. For example, 80% of files have the most
common 20 ext and size values, and these phenomena are
also documented in other pieces of literature [14], [16].

Recently, Xiao et al. [17] performed a more detailed
analysis to characterize the skewness of the structure and

operational distribution of file system namespaces on a wide
range of storage platforms, including cloud storage. They
found that the file system namespace shows a heavy-tailed
distribution for the size of the directory, which is represented
by several small directories with a small number of relatively
large directories. For example, among the 60 file systems
being examined, 90% of the directories contain fewer than
128 directory entries. Another valuable finding is that large
directories continue to grow as the storage system capacity
grows. In addition to the directory files, the normal file size
also shows a similar distribution. In the mainstream file sys-
tem, 64% of the media files are smaller than 64 KB, which
means that the majority of the system is small files that are
less than several hundred KB. This observation is also true
even in large-scale cluster file systems for Big Data process-
ing [18]. As for the depth of the directory tree, unlike the size
of the directory, it does not grow with the increase of system
capacity. In the system under consideration, the vast major-
ity (about 90%) of the directory tree does not exceed the
depth of 16. This phenomenon is observed in other stud-
ies [19], [20]. Unlike the skewness of metadata values of
interest to Leung et al., Xiao et al. studied the skewness of
metadata manipulation, and they found that in all the trace
files being examined, only one or two operations dominated:
namely the open operation and the readdir operation.

The performance of metadata access is essential to the
design and implementation of the file system [21]. As such,
the exploration of the metadata and its access characteristics
deepens our understanding of metadata management and
drives the research related to the metadata services.

1.2 Metadata Management Architecture

With the developments of the architecture of DFS in the past
decades, its corresponding metadata management has been
undergoing continuous improvements and optimization.
Traditionally, the metadata and data are usually placed on
the same storage servers. Regarding access efficiency, the
metadata was usually stored physically close to the data it
describes, which implies that no concept of “metadata server
(MDS)” was involved in the past [22], [23], [24]. With the
rapid growth of data in DFS, researchers found that the scal-
ability and performance of metadata services tend to be the
bottleneck in such an architecture. Therefore, Gibson et al.
[25] proposed a separate metadata server architecture,
regarded as a pioneer in separating the metadata server.
Since file operations, as well as data consistency across the
DFS, incur massive operations performed on metadata, the
performance of metadata operations is critical to the overall
performance of DFS. However, this problem is not that seri-
ous in early-day DFSs as they were usually small sized, and
thus the data and metadata are typically stored in the same
machine, which is a pseudo non-separated architecture.
Unfortunately, as the size of the DFS increases, this non-sep-
arated architecture suffers from significant performance deg-
radation as more servers need to be involved for metadata
retrieval, resulting in a tremendous amount of overhead. To
address this problem, the metadata is separately stored from
the data itself in modern DFSs, which leads to a new kind of
separated architecture. With this architecture, we can access
all the data by retrieving from the MDS separately, dramati-
cally improving the speed of MDS operations, which in turn

TABLE 1
File Read Timeline for a One-Block Sized File /foo/bar [11]

(Time Increasing Downward)

Metadata Data

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data

open
(bar)

read
read

read
read

read

read()
read

read
write
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enhances the scalability and performance of DFS. Given
these merits, the mainstream DFS nowadays often adopts
the separated architecture to manage its metadata, such as
CephFS, GFS, and so on. To sum up, as opposed to the tradi-
tional structure, the new architecture makes it easier to scale
up and improve the performance of themetadata server.

The current mainstream large-scale DFSs adopt a struc-
ture that separates the management of metadata from file
content (data) as shown in Fig. 1. The structure mainly con-
sists of three parts: the client file system, metadata server,
and object/data storage device (OSD/DSD). The functions
of each component are: the client is to provide a file system
access interface; the OSD/DSD holds all data of files; and
the duty of the MDS is to store and manage metadata.

The MDS system generally uses a single MDS or an MDS
cluster to maintain the file system’s global namespace and
the physical view of the file data storage. The metadata
information provides the client with services in an out-of-
band manner. At the same time, the MDS system also man-
ages the data storage devices. When a client needs to read
or write data, it would first communicate with the MDS to
retrieve the corresponding metadata. Afterwards, the client
transfers the data from the OSD/DSD according to the
metadata. This data transmission only occurs between the
client and the OSD/DSD. This architecture effectively
reduces the workloads of the MDS. By scale-out, the aggre-
gated I/O bandwidth of the DSD cluster can be fully uti-
lized to improve the overall performance of the I/O system.

Since the performance of MDS is a crucial factor of a DFS,
in addition to the separate design, many other research proj-
ects, such as CephFS [9] and HopsFS [26], are proposed to
optimize the MDS’s performance by leveraging a distrib-
uted MDS built on the database. The exploitation of the
database not only provides the MDS with a convenient and
concise read/write interface, but also enables the metadata
to achieve high performance by using specific index struc-
tures (e.g., log-structured merge-tree (LSM-Tree) [27], range-
query optimized persistent ART (ROART) [28], etc).

To preserve the directory locality, modern mainstream
POSIX-compliant DFSs usually retain inode and dentry on
the same server. Some studies have also explored whether
the inode and dentry can be placed on different servers,
such as CFS [29], which is a typical DFS with a separate

storage cluster to store and accommodate the metadata
based on the memory usage. To efficiently achieve the utili-
zation-based metadata placements, the inode and dentry of
the same file may be distributed across different metadata
nodes in the CFS. The architecture of CFS is shown in Fig. 2,
where the metadata subsystem consists of a set of meta
nodes, each node is composed of hundreds of partitions.
The whole sub-system thus can be regarded as a distributed
in-memory data store of metadata.

GlusterFS, by contrast, is an earlier, widely-used DFS
without using MDS, which is proposed in 2006 [10]. The
main idea of GlusterFS is to locate data by calculating the
hash values of the file name and path instead of using the
MDS for metadata management, which means the location
is high-efficiency once both file name and path are given.
GlusterFS performs efficiently with the known file name
and path, while the corresponding performance is worse in
other cases.

1.3 Challenges of Metadata Management

Some DFSs in the early stage, such as GFS [5], HDFS [4], and
BWFS [30], adopted a single MDS architecture. In the small-
scale case, a single MDS always shows advantages in reduc-
ing the communication cost ofmetadata access andmaintain-
ing the metadata consistency with low overhead. However,
with the development of cloud computing and Big Data, the
single MDS architecture is suffering from considerable chal-
lenges in terms of the scalability, performance, and availabil-
ity of storage systems. For example, in a massive storage
system at the EB-scale, the metadata can be increased to the
PB-scale [31], which leads to a high scalability requirement of
theMDS system.

In many applications, metadata is usually highly shared
and accessed concurrently, and low-latency guarantees are
required for high-frequency access metadata [32], which in
turn requires the high performance of the MDS system.
Finally, as a crucial part of file read/write, the breakdown
of a single MDS greatly declines the availability of services,
which is the basic guarantee for providing data services.

Considering these factors, an intuitive idea is to adopt
MDS clustering technology to attain high scalability, high

Fig. 1. A typical DFS structure. It includes three parts: MDS, OSD, and
interaction with clients. Fig. 2. The architecture of CFS. It consists of four components:

metadata subsystem, data subsystem, container cluster, and resource
manager.
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efficiency, and high availability. Therefore, many enter-
prises and research institutes conduct extensive and in-
depth research on the requirements of high scalability, high
performance, and high availability of MDSs based on the
MDS cluster architecture (e.g., CephFS [9], Lustre [6], [33],
[34], [35], CFS [29]). We made a timeline for some key tech-
nologies in the development of MDS. As shown in Fig. 3,
with the emergence of separated MDS, significant works
have been conducted to improve the performance and scal-
ability optimization of MDS and novel optimization techni-
ques have been proposed, accordingly. Note that only some
key representative works are listed in the figure.

This article summarizes and sorts out the state-of-the-art
in this area, and analyzes the existing problems to identify
prospects for future development, hoping to provide related
research with valuable references. It is worth noting that
this article is definitely not a summary of exhaustive tech-
nologies. Some hot topics including techniques for optimiz-
ing the metadata management for new storage media (such
as solid state drive (SSD) [36], [37], non-volatile memory
express (NVMe) [38] and phase change memory (PCM) [39])
or AI (e.g., deep learning) are not covered. Since these topics
can be summarized separately, interested readers can refer
to relevant literature [40], [41], [42], [43], [44], [45].

The remainder of this work is organized as shown in
Fig. 4, where the state-of-the-art of the metadata manage-
ment technologies is surveyed in terms of scalability, perfor-
mance, and availability, respectively. In particular, Section 2
studies and compares the metadata management methods
from the perspective of high scalability, while Section 3 over-
views the techniques regarding the performance of metadata
managements, including caching and replication, index and
retrieval, and value-addmethods as well. Section 4 discusses
the methods for the high availability of metadata in large-
scale DFS. Finally, Section 5 summarizes some future
research challenges, and Section 6 concludes this review.

2 HIGHLY SCALABLE TECHNOLOGY FOR

METADATA SERVICES

High scalability is one of the main purposes of adopting the
MDS cluster architecture, and it is also a hot issue in DFSs

in recent years. The main challenge is how to divide the
entire namespace of the file system into slices and distribute
them evenly among multiple MDSs. In addition to an initial
division, it also aims to effectively deal with the changes in
access loads and the elastic increase and decrease of MDSs.
The highly scalable technology of metadata management
can be classified from many angles. This paper summarizes
and compares the existing technologies into static and
dynamic spatial partitioning methods from the perspective
of the organizational query of metadata.

2.1 Static Space Division Methods

The so-called static space partitioning method refers to the
case that division of the metadata space only depends on
some information related to its structure, such as path
name, subtree size, etc., regardless of the actual load
changes. Subtree partitioning [46], [47] and hash-based map-
ping [6] are two common basic methods. Consequently,
there are many different variants based on these two meth-
ods for different scenarios and purposes [48], [49], [50].

2.1.1 Static Subtree Partitioning Methods

The static subtree method is a relatively simple partitioning
method, which is often used in early-phase DFSs, such as
NFS [51], AFS [52] and Coda [53], etc., as well as some recent
massively distributed file systems, such as Hadoop Federated
HDFS [54], etc. This approach typically leaves it up to the
system administrator with how to partition the hierarchy of
the directory and assign each “shard” (usually a subtree) to
the specified MDS. This approach is highly efficient when
the metadata of a file needs to be repeatedly accessed by a
relatively small number of servers. Whereas the main short-
coming is that it can not dynamically cope with the unbal-
anced metadata workloads. That is, the “hot spots” caused
by uneven accesses are not well handled. For instance, when
a group of files in the same directory subtree is frequently
accessed in a short interval, the server where they are located
would be extremely busy, thus becoming a performance bot-
tleneck of the entire system. To address this issue, the subtree
replication will play a particular mitigation role in some
cases. Still, it may also increase the cost of storage and the
overhead of maintaining copy consistency. Additionally,
there are some difficulties with this division method when
increasing or decreasing MDS. Because of the re-planning of
namespace partitioning, some subtrees need to be migrated
amongMDSs, resulting in the decline of performance.

2.1.2 Hash Function Mapping Methods

A hash-based method is to apply a hash function to the file
name to locate the file’sMDS. This approach not only reduces
the workload imbalance between the MDSs, distributing ser-
vice requests evenly across MDS clusters, but also allows the
clients to retrieve the metadata directly. For example,
Vesta [55] and zFS [56] utilize a hash of file path names to
locate the data and servers. The main drawback of this
approach is the lack of data locality. In addition, themodifica-
tion of the path name would lead to the migration of massive
metadata among the MDS cluster, increasing the network
workload. Like the static hashing method, access control and
the path query also bring lots of network overhead due to the

Fig. 3. Some key milestones in the development of MDS.
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prefix directory of the queried file being stored on a different
server. Furthermore, Note that the hash function will vary
with the number of servers, resulting in massive migrations
aswell.

At present, some improvements have been proposed in
the literature [57] for these issues. Unlike the traditional
methods based on file path name hashing, Xu et al. [57] sug-
gested using a hash function to assign an entire directory
subtree under a nested point to the sameMDS, which is ben-
eficial to maintain the locality. To this end, they designed a
new localized hash function based on simhash [58], [59]. The
main idea of the well-designed function is to hash each
directory’s sub-directory of a path (2-byte encoding). After
that, the hash values of the inode are linked to the same file,
forming a 48 B hash value instead of hashing the entire path
name. In addition to maintaining the locality, this approach
also makes it free to name new files and directories. For the
migration of files among directories, this approach can
swiftly update the hash value.

Notably, as far as handling data volume at ultra large
scale is concerned, these hash-mapping based methods
are more favored in industry. For instance, Tectonic – an
exabyte-scale distributed file system proposed by Face-
book [60] – leverages hash-partitions of each metadata
layer to avoid the hotspot issue. Not surprisingly, Tectonic
still suffers trade-offs and compromises arising from data
updates. To effectively reduce the data updates and
migrations caused by modifying the directory attributes,
some researchers adopted an alternative strategy to sepa-
rate the directory path attribute from the directory object.
The advantage of this approach is to reduce the overlap-
ping cache of the prefix directory, thus improve the utili-
zation and hit rate of the MDS cache. Moreover, it also
enhances the storage locality of the directory so as to
decline the disk I/O operations. Nevertheless, owing to
the increased overhead of retrieving the directory index
server, this approach may negatively impact the availabil-
ity of the entire system.

2.1.3 Subtree Hashing Methods

Subtree partitioning enhances support for the locality of
metadata accesses, but it still suffers from the imbalance
of storage loads. In comparison, the hash-based method
achieves better load balancing at the expense of locality sup-
port. Therefore, the hybrid subtree hashing approach inte-
grates these two aspects to take advantage of each other. The

hybrid method usually leverages a hash function to achieve
a balanced distribution of metadata among the MDSs and it
supports semantic query and control of directories and files
based on a hierarchical directory structure. It is generally
accepted that locality and load balancing are often contradic-
tory to each other by their very nature. However, as shown
in Fig. 5, the subtree + hashing approach adopts a hybrid
method to strike a good balance between these two metrics.
It first achieves good virtual locality by partitioning the
namespace of DFS into subtrees, and then realizes good load
balancing by hashing the partitioned subtrees into different
MDS servers in physics.

Based on this idea, Brandt et al. [48] proposed a hybrid
strategy called lazy hybrid (LH). On the one hand, the method
adopts a metadata lookup table to decouple the hash value
of the path from the position of the metadata, so as to attain
the elastic management of the server resources. On the other
hand, an access control list (ACL) with dual entries makes the
extra permission operations avoidable. Additionally, a
unique character of LH is to adopt a hybrid mechanism to
postpone the migration of metadata until it is visited after
being modified, thus declining the burst network traffic
betweenMDSs. However, although LH distributes the name-
space tree over different servers by the hash function, it
ignores the impact of single oversized directories. Exces-
sively large or skewed directories seriously break down the
scalability of the file system, so Swapnil et al. proposedGIGA
+ [61], a metadata management service based on a directory
partition and hash method. This approach achieves a further

Fig. 4. The state of the art of metadata managements for large-scale distributed file systems.

Fig. 5. The hybrid subtree hashing approach.
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trade-off between locality and load balancing, providing a
more fine-grained approach to namespace treemanagement.

Despite LH and GIGA+ having many advantages, they
still suffer from the network overhead caused by metadata
migration. Xu et al. [57] proposed a similar system DROP
for metadata management of EB-scale storage systems.
DROP uses hash functions to distribute metadata. Mean-
while, it maintains a global directory to execute the direc-
tory attribute dependent operations, such as reading and
writing permissions. As mentioned above, to achieve these
advantages, they used a hash function, called localhold, and
implemented a histogram-based dynamic load balancing
strategy to overcome the load imbalance caused by the hash
function.

Although DROP has significant improvements in both
efficiency and scalability to serve EB-scale file systems, the
augmented hash keys are required to be maintained in
metadata storage, leading to large additional space require-
ments. To address this issue, Gao et al. presented Angle-
Cut [31], [62], a ring-based metadata management policy for
large-scale DFSs to partition the metadata namespace tree.
For the most part, we tie a distributed file system into the
namespace of the local file system by mounting the remote
directory tree with a particular point in the local directory
tree. Therefore, the namespace organization structure of
DFS is tree-like, and we use the namespace tree to represent
the whole namespace. Similar toDROP, a novel locality pre-
serving hashing function is used to hash the metadata
namespace tree onto a linear key-space in AngleCut. Subse-
quently, the angle value of the metadata nodes will be calcu-
lated to allocate the nodes to a Chord-like ring.

The system architecture of AngleCut is shown in Fig. 6
where Node a-d represents the metadata nodes whose
positions are calculated by a specific hash function, and
Node1-6 stands for virtual MDSs, which are also mapped
to their respective positions on the ring via the same hash
function. According to the Chord definition [63], the meta-
data is allocated to the nearest MDS on the hash ring in a
clockwise direction. As mentioned above, maintaining the
hierarchy locality of the metadata namespace tree is an
essential part of MDS, so that the locality preserving hash-
ing (LPH) algorithm is used to assign “close” metadata
nodes to the same MDS as frequently as possible.

Afterward,AngleCut assigns the virtual servers to the real
MDSs through the cumulative distribution function (CDF) of
metadata access frequency. As shown in Fig. 6, server Node1

and Node4 are managed by MDS A. Based on this design,
AngleCut not only improves the system load balancing
degree and the system scalability but also reduces the use of
extra unnecessary space.

2.2 Dynamic Space Division Methods

As the name implies, the dynamic space partitioning
method assigns the global namespace to different MDSs rel-
ative to the static space partitioning method. When the
workload changes, the dynamic load balancing mechanism
is used to redistribute the metadata at different granularities
across the MDS clusters. Compared with the aforemen-
tioned methods, the dynamic space partitioning method
exhibits a comparative advantage in maintaining access
locality, the adaptive load change and the flexible use of
resources, and thus it attracts wide interest in industry and
academia. Currently, the mainstream large-scale DFSs, such
as Ceph [9], GFSII [64], GlusterFS [5], [10], and Luster [65],
support dynamic metadata management in various forms.
For the dynamic subtree partitioning method, research
mainly focuses on the issues such as the load balancing
technology and related resource flexibility.

2.2.1 Dynamic Subtree Methods

The load balancing issue is to migrate the workloads of
those heavily loaded nodes to the lightly loaded nodes. In
this phase, the load balancing is usually performed in a
minimum unit of the subtree to maintain the spatial locality
of accesses. Ceph is a typical system that leverages dynamic
subtree partitioning to achieve load balancing [9]. Specifi-
cally, each MDS uses an exponential time decay counter to
measure the frequency of the metadata accesses according
to the directory structure. Any operation on a particular
metadata item would increase the access count from the
root to all the directory nodes along the path to the accessed
metadata node, thus each MDS would provide a weighted
directory tree to characterize the most recent metadata load
distribution. The load value of the MDS is compared among
the MDSs by periodically sending the heartbeat information
to each other, and the heavily loaded node can then migrate
the identified subtree to the lightly loaded node, at the same
time, a new node has become an authoritative node of the
subtree. In Ceph, the authority node of a directory entry is
defined by the path name of the directory entry or the hash
value of its inode number. As the directory grows, or the
access frequency increases, it can be hashed to other nodes.
Otherwise, as the directory shrinks, or the access frequency
decreases, different parts of a directory subtree can be
aggregated from multiple servers to one server, which pro-
vides support for flexible resource management.

Ceph adopts a placement algorithm, called controlled
replication under scalable hashing (CRUSH) [66], to conduct
a structured mapping from objects to a hierarchical map,
which is composed of a cluster of OSD nodes, and then dis-
tribute the objects evenly across available OSDs. Although
Ceph has a respectable performance in load balancing, it suf-
fers from uncontrolled data migration after expanding the
cluster nodes due to the flaws of the CRUSH algorithm. To
achieve controllable data migration in Ceph, Wang et al. [67]
proposed a novel extension MAPX to the CRUSH algorithm

Fig. 6. The Architecture of AngleCut. The dotted line with an arrow repre-
sents the metadata node is assigned to the virtual node.
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by introducing an extra time-dimension mapping from
object creation time to cluster expansion time, where the
object creation timestamps can be maintained as a sort of
higher-level storage metadata. Experimental results show
that the MAPX-based migration-free Ceph outperforms the
CRUSH-basedCeph by up to 4:25� in terms of the tail latency.

The Blue Whale Metadata Management System (BWMMS) is
an MDS cluster technology developed for EB-level stor-
age [68]. With the integration of pNFS [69] and the BlueWhale
device file system (BWFS), BWMMS implements a metadata
distribution strategy granular to the directory. Unlike the
weighted subtree method in Ceph, the BWMMS partitions
the global namespace and specifies the total number of stor-
age directories for each partition. Once the partition is filled,
the new directory will be distributed to other metadata sub-
volumes. The selection of the metadata sub-volume is per-
formed in a Round-Robin manner to distribute the metadata
to respectiveMDSs. This idea is somewhat similar to theway
GPFS handles the diffuse column functions of large directo-
ries. The difference is that the contents in a perfect score are
not split. The BWMMS does not use the hashed path name to
locate the MDS. Instead, it maintains an in-memory MDS
Map data structure to store the mapping relationships
between the metadata sub-volume and the MDS. Although
this method does not depend on the path, it introduces the
control problem brought by theMDSMap. Another problem
with the BWMMS is that partitioning of the namespace only
considers the size of the directory entries without consider-
ing the frequency of accesses to the directory entries, result-
ing in an access hotspot problem.

Since each MDS has its own metadata balancer, a heart-
beat mechanism is needed to maintain consistency in the
MDS cluster. The balancer needs to send inodes to other
MDS nodes when rebalancing the loads so that the trade-off
of performance between distribution and locality needs to
be discussed. The performance may become worse and the
number of requests will increase when the metadata is dis-
tributed unnecessarily, because the MDSs need to request
the remote metadata from other MDSs for file system opera-
tions, which means, the dynamic subtree leads to the com-
plexity of deciding how to migrate the resources based on
the characteristics of said resources. In terms of exploring
locality vs. distribution with respect to the performance and
stability, and gain insights into the true bottleneck, Sevilla
et al. [70] presented a general programmable metadata bal-
ancer for CephFS, which is calledMantle.

2.2.2 Directory Item Subset Methods

As opposed to the systems mentioned above, for metadata
access characteristics, IndexFS [49] adopts a hierarchical
structure to design the MDS clusters, processes the meta-
data and small files in a unified manner, and considers their
out-of-core storage optimization. Each directory is built on a
random primary server, and the directory entries for all files
are also stored on the same server. When the size of an
increasing directory exceeds a predetermined threshold,
IndexFS will continue to divide it incrementally and ran-
domly store subsets in a backup MDS. To achieve load bal-
ancing, the choice of alternative MDS is based on the
principle of “Power of Two Choices” [71], which detects

two randomly selected servers and places the subset of direc-
tories in a server with a relatively small number of directo-
ries. It can be seen that, unlike the system based on the
subtree partitioning, the metadata of the IndexFS system is
distributed in a subset of directory entries stored in theMDS.
For background storage optimization, IndexFS utilizes the
LSM-Tree [27] — a technology commonly used in current
Key-Value Store systems — to represent and store the meta-
data and small file data. Each server stores andmanages part
of the file system metadata and uses LevelDB [72] to package
metadata and small file data into a flat large file. Then the flat
file will be formatted as a sorted string table (SSTable) [73]
and stored in the shared cluster file system. In this way,
IndexFS can serve the metadata retrieving by the Key-Value
interface of LevelDB. Despite the scalability of metadata
accesses having been improved, studies have shown that
this approach strongly depends on exploiting the locality of
the cache to reduce the cost of path queries [17], [74]. There-
fore, in the case of divergent path access, cache updates will
lead to significant hotspot issues with this approach.

2.2.3 Dynamic Hashing Methods

GPFS is a distributed file system designed by IBM for shared
storage [75], which implements dynamic expansion of direc-
tory organization at the block level by means of extensible
hashing. The entries of a directory are stored on disk blocks,
which are addressed by the low-order n bits of the directory
name’s hash value, where n depends on the size of the direc-
tory. Specifically, when a new directory entry is created for a
directory disk block, the disk block is divided into two parts
if it is full. The logical block number of the new disk block is
implemented by the nþ 1 bit position ‘1’ of the old block
number. The directory entry is the migration of the directory
entries whose hash value of the nþ 1th bit in the old disk
block is ‘1’. The nþ 1th bit of the logical block number of the
old disk block is ‘0,’ and its directory entry is also composed
of the remaining directory entries whose nþ 1th bit has a
hash value of ‘0’. Thus, regardless of the size and structure of
the catalog file, a query typically requires only one directory
block query. Because it is shared storage, all nodes can partic-
ipate in metadata management including the namespaces.
The consistency of metadata is guaranteed by token control
between the nodes. Based on the same idea, some researchers
applied the column-hash function to the numbering of the
MDS set to achieve load balancing in the elastic server
resources. However, thismethod does not provide good sup-
port for the locality of metadata accesses due to the random-
ness of the load splitting.

In the hierarchical metadata management based on the
group concept proposed by Hua et al. [76], the splitting and
merging of the group also adopts a similar method. Simi-
larly, the AbFS2 [77] metadata model combines a hash/table
and B+ trees, which is based on the same idea. However,
these approaches only aim to balance storage space but lack
dealing with the hotspots. To address the hotspot issue,
AngleCut [31], [62] adopts a periodic random walk to esti-
mate the cumulative distribution function (CDF) of meta-
data access frequency. As the access frequencies of nodes
change over time, the hotspot caused by the unbalanced
workload of MDS can be captured by CDF so that AngleCut
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can reallocate metadata on the LPH-based hash ring accord-
ingly. In particular, Kettaneh et al. [78] proposed a storage
system, NICE, which leverages a software-defined network
to optimize the scalability of the DFS. The MDS in NICE is
responsible for managing the metadata for the storage sys-
tem, which includes the information of the storage nodes in
the NICE and the range of the hash space (partition) served
by each storage node. With the heartbeats of storage nodes,
the MDS can detect the membership changes (say, joins and
failures) and control the OpenFlow switches to update the
forwarding tables.

2.3 Summary

In this section, we overviewed a variety of scalable technol-
ogies for MDSs in DFSs. The studied works are summarized
in Table 2. And we compared these methods from five
aspects: access hotspot, load balancing, support for access
locality, resource elasticity, and namespace change.

According to the comparison in Table 3, each of these
methods has its own merits. For instance, static hashing
methods (i.e., hash function mapping and subtree hashing)
can effectively avoid the hotspot issue. While as mentioned
in 2.1.1, the static subtree partitioning method performs
poorly in load balancing compared with other methods. As
for the locality, the naive hashing methods cannot maintain
good local correlation of data, so the locality performance of
these methods (i.e., hash-function based mapping and
dynamic hashing) are worse than that of others. In contrast,
for the cost of scalability, the dynamic subtree can effectively
reduce the adjustment cost when adding or removing nodes
due to the dynamic tree structure. From this table, we can see
that the current technology is still expensive in terms of
adapting to resource flexibility and filename change.

In summary, all these methods attempt to make a trade-
off between locality and load balancing. In particular,
subtree-based methods focus more on locality, while hash-
based techniques often concentrate on load balancing. Some

others try to mix up these methods by using different strate-
gies, but they have to suffer from degraded performance in
respective aspects. As such, there is no universal solution
effective for both metrics simultaneously, and how to com-
bine those methods to strike a balance between the locality
and load balancing in favor of the scalability with a reason-
able cost is still an open problem worth further studying.

3 HIGH-PERFORMANCE TECHNOLOGY FOR

METADATA SERVICES

We broadly classify high-performance technologies for
MDSs into three categories. The first category is those used
to address the scalability of MDSs, such as load balancing,
hotspot elimination, etc., to improve the performance of the
entire file system. Second, with respect to the attribute set of
the existing metadata, a new indexing mechanism is estab-
lished for various query applications to improve their effi-
ciency. The third category of technologies goes one step
further, and we call it the value-added technology for MDSs.
The core idea is to extend the metadata set for a variety of
applications, each with different purposes. The extended
metadata set is called the value-added metadata set, and we
improve specific application performance by leveraging the
application-oriented value-added MDSs.

3.1 Cache and Replication

Cache and replication are two key technologies often-used to
achieve the high scalability of MDSs. Meanwhile, since they
can greatly reduce response time by caching hotspot meta-
data in memory or organizing metadata in a more accessible
manner, regardless of whether the cluster is scaled out or up,
both caching and replication can dramatically reduce the
latency of MDS to retrieve metadata, thereby improving the
overall performance of DFS. Moreover, caching can be
implemented at both server-side and client-side in attempt-
ing to address performance issues in addition to scalability.

TABLE 2
Summary of Existing DFS With Different Methods of Namespace Slice

Method Reference

Static Space
Division

Static Subtree Partitioning Sprite [79], Panasas ActiveScale Storage [46], NFS [51], StorageTank [80], AFS [52], Coda [53],
Hadoop Federated HDFS [54]

Hash Function Mapping Vesta [55], Intermezzo [81], RAMA [82], zFS [56],DROP [57], Lustre [6]
Subtree Hashing Lazy Hybrid [48], GIGA+ [61],DROP [57], AngleCut [31], [62]

Dynamic Space Division
Dynamic Subtree Ceph [9], Farsite [83], Envoy [84], BWMMS [68], pNFS [69],Mantle [70]
Directory Item Subset IndexFS [49], [71] [17], [74]
Dynamic Hashing GPFS [75], G-HBA [76], AbFS2 [77], AngleCut [31], [62], NICE [78]

TABLE 3
Comparison Between Static Namespace Method and Dynamic Namespace Method

Metric Static Dynamic

Subtree Partitioning Hash Mapping Subtree Hashing Subtree Directory Item Subset Hashing

HotSpot Yes No No Yes Yes Yes
LoadBalance Bad Good Good Good Good Good
Locality Good Bad Good Good Good Bad
Scalability High-Cost High-Cost High-Cost Low-Cost High-Cost High-Cost
Name Change High-Cost High-Cost High-Cost High-Cost High-Cost High-Cost
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Therefore, both cache and replication also play key roles
in improving the performance of the entire file system. For
example, in Ceph, in order to eliminate access hotspots for
load balancing, both the authority node and collaborative
caching are adopted in the research, in which the authority
node is defined for each metadata item to implement the
serial access to the metadata at certain times, record the
changes (say, write to external memory), and maintain
the cache consistency and coherence when there exist multi-
ple copies of the same data. Cooperative caching requires
that when a metadata item has a copy in another MDS’s
cache, the authority node has the right to communicate with
it to maintain the cache coherence. If a cached copy of a
non-authority MDS is removed, the authority node is also
notified to remove its local copy for cache consistency. The
concept of authority nodes decentralizes the metadata con-
trol and it is the basis for implementing the replica technol-
ogy. The cooperative cache maintains the consistency of the
copy [85].

In distributed metadata management, the path name
lookup is often considered a major performance factor, lim-
iting the system scalability and affecting the overall system
performance. Xiao et al. [86] conducted an in-depth quanti-
tative study on this problem by comparing ShardFS [87]
with IndexFS mentioned above. In order to improve the
access performance of the metadata, IndexFS maintains a
consistent lookup cache on the client for each component of
the path name and access rights. By using a lease for each
directory entry, it reduces the amount of invalidation
caused by changes to path names, improving the perfor-
mance of the metadata query service. In contrast, ShardFS
leverages the query state of the replication path in the MDS
cluster to ensure that each file operation acts on only one
node, eliminating the need for lock-based accesses to multi-
ple servers. In addition, by classifying the metadata ope-
rations, the implementation of specialized distributed
transactions further reduces the replication cost. These two
methods have their own problems in spite of their respec-
tive advantages. In IndexFS, when some accessed directory
entries are not in the cache, the cache miss would occur,
and thus, the client has to experience a high query delay
while in ShardFS, the high latency of the client is mainly
from the overhead to maintain the multi-copy consistency
caused by the updates to the directory metadata.

Also, the update mechanism of the cache is an important
issue worth studying. Due to the different read/write
speeds between the CPU cache and the computer memory,
two cache update methods are often adopted in MDS: write-
through and write-back. In write-through cache, data is writ-
ten to the main memory simultaneously as the cache is
updated. In contrast, in write-back cache, data is only writ-
ten to the main memory when it is forced out of the cache
on line replacement following a cache miss. Otherwise, the
writes by the processor only update the cache. Compared
with its write-through counterpart, the write-back cache
usually achieves better performance for the update opera-
tion of the MDS. Therefore, it is widely used in various
DFSs, say Lustre, which overcomes the link latency for mod-
ifying the metadata by using the write-back cache [88].

Caching mechanisms can be implemented at either
server-side or client-side. Traditionally, it is implemented

on the server-side. Client-side caching is also well worth
studying as it can dramatically reduce the server-side work-
load even though some consistency cost is incurred. For
example, the hierarchical Persistent Client Caching (LPCC)
proposed by Qian et al. [34] is such a client-side cache mech-
anism designed specifically for the performance improve-
ment of HPC file systems (e.g., GPFS, Lustre and BeeGFS).
Furthermore, Cheng et al. [89] proposed a non-volatile main
memory (NVMM) oriented client-side caching for Lustre
based on LPCC. This approach, named NVMM-LPCC, lever-
ages NVMM to attain high-speed cache retrievals, as well as
classifies the cache into read/write and read-only modes to
take full advantage of locality. Also, Xiao et al. [17] found
that if the operations that change the directory query state
occupy a fixed share in all the operations of the metadata,
the server-side replication model of ShardFS is not as effec-
tive as the client-side caching in IndexFS in terms of scalabil-
ity and performance. However, if the operations that
change the status of the directory query are proportional to
the number of jobs, the server-side replication model has
better linear scalability than the client-side caching method.
In addition to these two methods, Pineda-Morales et al. [90]
proposed a specific technique that leverages workflow
semantics and combine distribution and replication for in-
memory metadata partitioning. Nevertheless, for a large
number of small files, the cost of requesting metadata usu-
ally exceeds the cost of actually requesting data, so that the
caching and replication of metadata may not work well for
performance in this case. To address this issue, Matri et al.
[91] proposed a novel DFS architecture, optimized for small
files based on consistent hashing [92] and dynamic metadata
replication. This design allows clients to locate the data
without resorting to the metadata, while the dynamic repli-
cation replicates the metadata among the MDSs to adapt to
the workload changes.

Meanwhile, based on the observation that there are usu-
ally more idempotent and fewer dependencies in the real-
world data, Li et al. [93] and Bravo et al. [94] proposed Repli-
chard and Saturn, respectively. Both of them implement
causal consistency [95] for MDS, and classify the request oper-
ations into non-idempotent and idempotent classes. For the
idempotent requests, they can be serviced by any MDS,
which holds the replication while for the non-idempotent
requests to the same path, all of them will be assigned to the
sameMDS to ensure its consistency in a simple way. This is a
reasonable and flexible consistency scheme, but the handling
of failures and the atomicity of operations should be taken
into consideration thoughtfully [96].

Given the replication, the metadata would eventually
have an unbalanced distribution. How to combine these
methods to achieve the optimal performance based on the
changes of workload characteristics is a problem worthy of
further study. As mentioned above, some techniques [31],
[57], [62], [97] (e.g., DROP and AngleCut) could rebalance
the distribution through the metadata access frequency.
Similarly, Cao et al. [98] proposed AdaM—an adaptive fine-
grained metadata management scheme. Unlike those his-
tory-based methods, AdaM leverages deep reinforcement
learning to address the load balance against the time-varying
access patterns. By evaluating the system performance at
each period, AdaM leverages an algorithm DDPG [99]—a
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deterministic policy-based algorithm—to perform rebalance
actions to achieve the load balance and the locality preserva-
tion timely. The experiments show that AdaM can achieve
higher performance than the AngleCut approach with a
lower migration cost.

3.2 Metadata Retrieval

In many cases, the operations on metadata are not just locat-
ing files through directory lookup and access control, instead
they are versatile, not only including those for points, ranges,
and top-k, but also having aggregated searches like the file
attribute sets to fulfill specific lookup requirements. How
many copies of a file are in the system? Which files consume
the most space? For these problems, the aforementioned
techniques have to employ a brute force search, and these
requirements cannot be effectively fulfilled due to the lack of
indexes on the metadata attributes. The efficient metadata
indexing is usually designed based on the understanding of
the characteristics of the metadata accesses as well as the
metadata itself. For example, Leung et al. [15] proposed Spy-
glass, which exploits two main techniques to implement the
aforementioned metadata and leverages its access character-
istics to achieve fast and scalable metadata retrieval services:
hierarchical partitioning and partition versioning.

3.2.1 Index Tree

First, the directory space of the file system is partitioned into
subtrees using hierarchical partitioning, and one or more
directory subtrees responsible for indexing each partition are
given in the form of the K-D tree [100]. The partitioned index
stores themetadata of the files in the partition, while the parti-
tion’s own metadata retains the partition information and
pointers to the child partitions. The partition includes the
information used to determine whether the partition has the
information related to the search condition and support for
partition version control. The former is implemented by com-
paring the file signature representing the contents of the file.
It can be seen that the indexed partition constitutes a tree,
called the Spyglass index tree, and each index partition is
sequentially stored on the disk as shown in Fig. 7. This kind of
partitioning and its storagemethod retains the support of spa-
tial locality for file system accesses, but at the same time, there
is a problem of how to adapt to the changes in file metadata in
the partition, such as addition, deletion, and change. To this
end, Spyglass uses a version control approach—partition ver-
sioning, instead ofmodifying the metadata information in the
field. Specifically, Spyglass batches the modifications of the

file metadata in the partition at regular intervals (file system
parameters). The modified partition is stored as a new
indexed version and in an incremental version of the older
version. Simultaneously, the old version is also retained as a
support for the user’s “back-in-time” retrieval and trend
query.

Compared with traditional methods that establish the file
metadata index based on DBMS, Spyglass’s method not only
increases the retrieval speed by eight to 44 times, but also
reduces the storage space by five to eight times [101]. How-
ever, this indexing also imposes certain burdens and over-
heads on the memory capacity and the organization of
metadata. How to integrate it with the aforementioned load
balancing is a complicated, yet worth exploring, problem.
Replacing the k-dimensional tree (KD-tree) with a more effi-
cient index tree (such as prefix trees) might be a viable way
to reduce memory footprint and improve performance. For
instance, Masker et al. [102] proposed Hyperion, an efficient
in-memory indexing data structure, which can significantly
reduce the index memory footprint and improve the perfor-
mance. Base on a similar idea, SmartCuckoo [103] improve the
Cuckoo Hashingmethod by using a directed pseudo-forest to
express hash relationships, thus avoiding the occurrence of
an infinite loop on the metadata index and enhancing the
performance of the originalCuckoo Hashing.

3.2.2 Bloom Filter

For the retrieval of metadata, Hua et al. [76] also proposed a
similar method based on the hierarchical division between
groups, which is called G-HBA. Unlike the subtree partition-
ing for directory space in Spyglass, G-HBA organizes the
MDSs into logical groups. Each MDS in the group maintains
a set of Bloom filters [104], [105] as a filter bank, representing
all the files whose metadata is stored on this server. This
server is also known as the home server (homeMDS) for these
files whose maintained filter bank periodically passes the
replication information to all the other servers. In this way,
each server can accommodate a mapping of a portion of the
files in the system to its primary server and each group as
such to roughly maintain a mapping of all the files to their
primary servers. Since the metadata query of G-HBA is dif-
ferent from the traditional path name hashing method, the
query can start from the detection of the Bloom filters from
anyMDS, and is performed step by step from the local intra-
group to the final inter-group. The organization between
groups is different from the hierarchical way, in which the
partitions are decomposed along the directory tree in Spy-
glass. Moreover, it also has no fixed structure. Through this
method it is easy to achieve load balancing of storage space,
but intra-group and inter-group queries have to use multi-
cast methods, which increases the network traffic. Addition-
ally, as mentioned earlier, hot issues caused by the skewness
of accesses are also a factor worth considering.

Similarly, both SoMeta [106] and MDBF [107] also use a
Bloom filter to accelerate the metadata search process for
large-scale DFSs. Specifically, MDBF is a parallel metadata
search method based on a Bloom filter, which unlike the
grouping strategy of G-HBA, is based on the directory tree.
Multi-dimensional Bloom filters (MDBF) are implemented as
network services, which support multiplemetadata attributes

Fig. 7.Spyglass index tree, a namespace decomposition based sub-tree.
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representation, and each MDBF is related to a directory,
respectively. As opposed to the directory tree approach used
by MDBF, a flat namespace is used by SoMeta to manage
metadata, which could avoid the overhead of traversing the
prolonged directory path in the hierarchical namespace.
Although both the search performance of MDBF and SoMeta
are improved slightly, the space overhead also increased
correspondingly.

Parallel computing is an alternative effective way to
improve metadata retrieval, and the client can operate on
the metadata in parallel by using multiple threads. For
instance, in Lustre, a new feature is developed that allows
the metadata to be manipulated by remote procedure call
(RPC) that operates in parallel [108], which in turn improves
the multi-threaded metadata performance of a single client.

3.2.3 Pre-Fetching

In addition to the techniques discussed above, the prove-
nance of metadata is another consideration that can be used
to speed up the metadata retrieval. The provenance is a type
of metadata that is derived by analyzing the behavior of a
user’s process relative to a file. Such metadata describes
which process creates the item, modifies it, and why the item
is found in the current location. Therefore, the provenance
analysis of the data can reflect the correlation between the
file and the process, and acceleratemetadata retrieval by par-
titioning and indexing metadata with these relationships,
and pre-fetching the metadata that has not been accessed in
advance according to the correlation. PROMES [109], P-
Index [110] and ProMP [111] are all explorations that try to
achieve high query accuracy and low latency through prove-
nance analysis. PROMES indexes data in a relationship
graph coming from provenance’s analysis. It leverages corre-
lation-aware metadata to build the index tree, and would
execute the query in index subtrees when a query request
was received by a storage system. While P-index partitions
metadata into logical groups based on correlation via prove-
nance relationships and cuts off the subtrees that do not con-
tain the query results to reduce search scale. Moreover, it
builds the index tree structure with the metadata coming
from provenance, which is similar to PROMES. And ProMP
uses provenance to support metadata pre-fetching. The
ProMPmines the correlations between processes and the cor-
responding files then generates a Provenance Window (PW)
to compute the file access correlations in the same PW, thus
achieving the aggressive pre-fetching. The experimental
results demonstrate that significant performance improve-
ments in terms of metadata search occur by using prove-
nance in indexing and pre-fetching.

The aforementioned provenance-based pre-fetching
method tends to obtain file associations from the access his-
tory. Nevertheless, Chen et al. [112] found that the correlation
of file mining from historical co-occurrence frequency is not
sufficient for all the files. To supplement this correlation,
they proposed a novel approach, called SMeta, to explore the
explicit data correlations by mining the reference of hyper-
links that exist in many applications. Based on the analyzed
correlations, the SMeta leverages a correlation-directed algo-
rithm for pre-fetching. The experiment implements the
SMeta atop of Ceph and evaluates it using synthetic and real

system workloads. The results show that the metadata per-
formance has a significant improvement.

3.2.4 Key-Value Database

Xu et al. [113] gave a more detailed discussion on the meta-
data retrieval in Big Data high performance computing
environments, from the aspects of index manageability, scal-
ability, performance and POSIX interface support. The existing
metadata index results including the above techniques are
summarized, and the classification of add-on and database
models is proposed, and at the same time they are com-
pared. On the basis of combining the advantages of the file
system and database, a file system level metadata manage-
ment system VSFS [113] is proposed. VSFS supports trans-
parent namespace queries and flexible file indexing.
However, the proposed single master structure of the sys-
tem does not have large-scale scalability.

For the background storage optimization, IndexFS uti-
lizes the LSM-Tree [27] technology commonly used in cur-
rent Key-Value Store systems to represent and store the
metadata and small file data. Each server stores and man-
ages part of the file system metadata and uses LevelDB to
package metadata and small file data into a flat large file.
Coincidentally, in the architecture of BlueStore—a novel
storage backend for Ceph, a key-value store, called
RocksDB [114], [115], instead of the file system, is used to
store the metadata [116], [117]. Based on Ceph’s experience,
storing metadata in RocksDB allows it to leverage fast meta-
data operations. Given its performance improvements and
some other advantages, BlueStore has become the default
storage backend to Cephwithin just two years.

In addition to fast metadata operations, storing metadata
in a database also provides a simple option for the MDS
cluster. For instance, an Active NameNode (ANN) is needed
to manage the metadata in HDFS, and at least one Standby
NameNode is needed for high availability. Consequently, the
unique NameNode is now the performance bottleneck in
HDFS. To address this issue, Niazi et al. [26] proposed a
next generation distribution of HDFS, called HopsFS, whose
architecture is shown in Fig. 8. HopsFS supports multiple
stateless NameNodes and stores the metadata in an external
NewSQL database [118].

In comparison, for both IndexFS and ShardFS, the MDSs
handle the metadata stored in local LevelDB instances and a

Fig. 8. The architecture of HopsFS. An external database named ”NDB”
is adopted to manage metadata in this implementation.
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caching mechanism is exploited to improve the perfor-
mance. Instead, HopsFS only makes load balances at the
top-level directories. The experimental results show that
HopsFS could deliver 37 times the throughput of HDFS for
write-intensive workloads.

Nevertheless, although a few DFSs try to optimise the
performance by using the key-value store, the results are
not that satisfactory in empirical studies. Some researchers
find that the performance gap between the key-value store
and the DFS metadata is still remarkable. From these pieces
of research, it shows that although some file systems gain
benefits by storing metadata in a key-value store, the depen-
dencies between directory trees still prevent the file systems
from making full use of the advantages of the key-value
store [119]. To improve the performance of MDS, Li et al.
[120] studied this problem in depth and proposed a solution
called LocoMeta—a flattened MDS for DFSs.

As shown in Fig. 9, LocoMeta proposes strategies to trans-
form directory tree metadata into a flat space, which is called
a flattened directory tree.With this design, themetadata objects
are independently stored in a flat space. Evaluations show
that LocoMeta achieves lower latency and more efficient
input/output operations per second (IOPS), compared to
IndexFS. However, from other research on the flat name-
space, there are two challenges in the flat namespace
approach, one is due to the lack of logical organization (e.g.,
directory tree), and the other is locating specific or related
metadata [106], [121].

3.3 Value-Added Metadata

The so-called metadata value-added technology is an appli-
cation-oriented technology that is built on top of existing
metadata management in DFSs to integrate some specific
metadata for particular applications. As such, it can com-
bine with the aforementioned index technology to specifi-
cally improve the computational power and performance of
certain types of applications. The metadata value-added
technologies can cover a wide range of applications, each
having a different purpose. This section focuses only on sev-
eral techniques that have an impact on high-performance
applications.

In order to exploit the values of some intermediate results
that would, otherwise, be discarded in scientific computing,
Wang et al. [122] added the description of the structure and
semantics of the intermediate data files as the value-added

metadata into the metadata management in existing DFSs.
This approach can reduce redundant computational tasks by
tracking and mining the originally discarded files. As a con-
sequence, the performance of the complex scientific compu-
tation is correspondingly improved.

Based on the above research, Wang et al. [123], [124] fur-
ther designed and implemented a scientific workload-aware
file system, called WaFS, which could store the read and
write dependency information between files in an in-mem-
ory database. This part of the added-value metadata over-
comes the inabilities of the existing file system to record the
dependencies between files. The workflow scheduler is an
effective tool to improve the concurrency of workflow tasks
and maximize resource utilization with such dependencies.
In spite of this advantage, WaFS is still limited to the sup-
port for workflow computations, and only works for work-
flows that are characterized by a control-flow dependency.

Other works in this area include the distributed storage
middle-layer technology proposed by Zhao et al. [125], [126]
for metadata-intensive operations in FusionFS and the “rich
metadata” concept proposed by Dai et al. [127]. It not only
records some attributes of related file entities in high perfor-
mance computing, but also integrates their relationships
such as the generational relationships, through the pro-
posed generic property graph, enriching various queries for
metadata in high performance computing. Conceptually,
“rich metadata” and the dataflow dependencies proposed
in WaFS could complement each other. The generational
relationship and data dependence characterize the logical
relationships between the files in the computing process,
which are not possible for traditional file systems to achieve.

In addition to the POSIX metadata, the value-added
metadata could introduce extra associations between pro-
cesses, tasks, file, etc. These associations are more like a
graph representation than like a separate flag description.
Therefore, Dai et al. [128] designed GraphMeta, a graph-
based rich metadata management system for HPC plat-
forms. Although the graph approach can facilitate the repre-
sentation of metadata associations, the complexity of graph
partition and graph search still makes it barely adopted in
practice.

As an integrated solution, Sim et al. [129] combined the
above methods and proposed a scalable, distributed meta-
data indexing framework, called TagIt, which facilitates a
flexible tagging capability to support data discovery. TagIt
provides a PB-level tagging function, allowing users to add
their own tags to the metadata, which as a result associates
rich contextual information for rapid retrieval. Moreover,
TagIt also supports executing operation or filter on the
tagged files, which can be seamlessly offloaded to storage
servers in a load-aware fashion. To validate the feasibility
and performance, TagIt has to be implemented into both
GlusterFS [10] and CephFS [9]. The empirical results demon-
strate that such a value-add method can efficiently expedite
the data search operation.

3.4 Summary

This section introduced several high-performance techniques:
cache & replication, metadata retrieval, and value-added
technology. Table 4 summarizes the comparison of these tech-
nologies, where both value-added and replica technologies

Fig. 9. An example of the flattened directory tree shows how to transition
from tree space (left) to flattened space (right).
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are implemented by using extra memory, and hence, they are
simpler and more efficient to achieve than the metadata
retrieval. However, the value-added method is usually weak
in generality as it requires field-specific optimization to carry
out a particular design, according to the application scenarios.
It is for this reason that it is often used in pre-optimizing the
metadata without the requirements for real-time processing
like the other two. Rather, without considering the cost of the
extra space, the cache&replication is undoubtedly a worth-
while way to improve the performance without focusing on
the application itself.

For high-performance optimization, both cache and rep-
lication mechanisms have been developed in relatively
mature forms and found in almost all the existing DFSs [34],
[89]. Additionally, given the merits of the key-value data-
base, its introduction into metadata management is also a
promising method, which has become a trend in recent
mainstream DFSs [114], [117], [130]. Furthermore, as an
optimization method for data administrators, a variety of
DFSs also provide extended interfaces for value-added
approaches, say, the secondary and tertiary indexes [128],
[129]. All these methods are orthogonal and thus can be
integrated to perform various purposes. We then expect the
future DFS to support all these optimization methods in one
shot as a natural evolution of the DFS development.

4 HIGH AVAILABILITY TECHNOLOGY FOR

METADATA SERVICES

Due to the ever-increasing scale, the MDS always faces the
risk of potential faults. To ensure its uninterrupted services,
the MDS cluster is required to be highly available. As men-
tioned earlier, in shared cluster file systems, for each parti-
tioned directory, several candidate MDSs are randomly
selected, and the directory subset will be stored in those
with fewer directory entries to improve the availability of
the MDSs.

4.1 Copy-Based High Availability Metadata Service

Distributed metadata management is performed through
multiple MDSs to overcome the single point of centralized
metadata management to improve the availability of meta-
data. Although a few MDS failures could not crash the
entire system, it could affect to some extent the normal
access of the system. To achieve higher availability of MDS
clusters, we can adopt redundancy technologies for meta-
data management where the metadata on each MDS is
backed up to other MDSs, according to the workload distri-
bution in the cluster. Both Hadoop and GFS use copy-based
metadata management. Considering the metadata recovery
time, the metadata backup can be divided into a restart
recovery mode and a warm standby mode.

The process to recover the metadata is mainly to backup
the metadata from one MDS to other MDSs and set check-
points periodically. When the MDS fails, the backup MDS
can be enabled to load the metadata starting from the latest
checkpoint, so the MDS can be restored at that point. The
advantage of this mode is that development is simple and
convenient, but the biggest hidden danger is the inconsis-
tency of the metadata. Moreover, the metadata is updated
after the checkpoint is not restored. To solve these problems,
the log method is usually combined to make the recovered
metadata of the standby MDS the latest version. However,
the restart and recovery still require a certain amount of
switching time, rendering real-time recovery impossible.

As with the method used to recover the metadata, the hot
backup method is also required to select a standby MDS to
become the active MDS. Both the MDSs can access the direc-
tories in the shared storage devices, and the directories store
the logs for updating the namespace. The alternate MDS
will detect the logs, and update all log records to its own
server. The data storage server’s data location information
and heartbeat detection are sent to the two MDSs so that the
corresponding information can be updated in real time.
Once there is an MDS failure, there will be a backup MDS to
replace it. Hadoop’s metadata management is based on this
high availability (HA) principle.

Although HA is widely being used in HDFS, there are
still some obvious shortcomings. For example, the check-
point mechanism leads to a constraint on the size of meta-
data states, which is required to fit within the memory of
the MDSs. To solve this problem, Stamatakis et al. [131] pre-
sented a novel architecture for replicated MDSs, which is
called HDFS-RMS.

Fig. 10 illustrates the difference between HDFS-HA and
HDFS-RMS. There are only twoNameNodes, one activeName-
Node and one standby NameNode in HDFS-HA while the
HDFS-RMS architecture consists of onemaster and any num-
ber of followerNameNodes. Whenever the master crashes, the
service can be resumed by switching to a new NameNode,
which accesses the state from the Oracle Berkeley DB (BDB)
replicas.

In GFS, the standby MDS can provide read-only access to
some files in certain cases. If a high-available module is
appointed on the MDS, the MDS is provided to the system
while the fault information is shielded, so that when the
MDS fails, the metadata request is automatically switched
to another candidate MDS, thereby achieving high transpar-
ency and high availability to the clients. This method can
ensure better data consistency and short switching time, but
it adds a certain complexity and brings a lot of pressure to
the system maintenance.

The high-available solution in BeeGFS [8] is similar toGFS.
The metadata mirroring with high availability in BeeGFS is

TABLE 4
Comparison Among Cache&Replication, Metadata Retrieval and Value-Added Technology

Metric Cache&Replication Metadata Retrieval Value-Added

Extra Memory Yes No Yes
Universality Good Good Bad
Usability Good Bad Good
Pre-Optimization No No Yes
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called buddy groups. In a buddy group, the metadata is rep-
licated between a pair that targets each other, which means
the buddy group approach is still accessible while one-half
of all servers have failed. The design of the buddy group in
BeeGFS is illustrated in Fig. 11. As shown in this graph, each
group is a replication between two targets. Normally, one of
theMDSs in a buddy group is regarded as the primary, while
the other is the secondary. Modifying operations will always
be sent to the primary first, and the mirroring process is run-
ning in the primary. Once the primary MDS of a buddy
group is unreachable, it will be marked as offline and the for-
mer secondary will become the new primary. Such a failover
is transparent and happens without any loss of data for run-
ning applications.

Both Farsite [83] andArchipelago [132] leverage the replica-
basedmethod to manage the metadata. However, in order to
reduce the overhead caused by the replication, Archipelago
divides the nodes in the clusters into several small islands,
and copies the metadata to each island for uninterrupted
MDSs. In contrast, Farsite copies the metadata to several
nodes. In order to reduce the resulting overhead, modifica-
tions on the metadata are recorded in logs and periodically
copied to other MDSs. Chen et al. [133] used a similar tech-
nology to design a highly available MDS for the Dawning
Cluster file system (DCFS3). The basic idea is to reduce the
latency from the Packed Multi-Paxos, and at the same time,
minimize the overhead of the consistency protocol incurred
by the number of copies. Zhou et al. [134], [135] proposed a
new highly reliable policy of MDS called Multiple Actives
Multiple Standbys (MAMS). Similar to Archipelago, MAMS

divides MDSs into different replica groups and maintains
more than one standby node for failover in each group. In
contrast to traditional strategies, there are three states of
MDS in MAMS: active, standby or junior. The active MDS is
responsible for online management, while the standby MDS
keeps up-to-date with the active node, and the junior MDS is
a passive standby server. The experimental results show that
theMAMS policy can achieve a faster transparent fault toler-
ance with less influence on metadata operations than the tra-
ditional HA principle.

4.2 Log-Based High Availability Metadata Service

One of the inevitable problems of the replica-based MDSs is
latency. In order to reduce the number of disk I/Os for
metadata accesses, caching technology is often used to save
partial metadata operations. Once the MDS is shut down,
the cached metadata items are lost. Therefore, to improve
the availability of the MDSs, the file system needs to be able
to persist all the metadata modifications. As such, it often
requires a log method to record the metadata modifications
for each MDS. Even if the data in the cache is lost, it is still
possible to recover the data based on the logs.

In the shared-disk cluster, the metadata and logs are
stored in the shared disk array-based storage (such as stor-
age area network (SAN)). In order to maintain the consis-
tency of metadata, GPFS exploits the distributed locks to
achieve the multi-user synchronous accesses to the meta-
data, and the distributed locks have better concurrency than
the centralized management [75]. The update operations on
the GPFS metadata implement the consistent updates of the
file system through a write-ahead logging (WAL) mecha-
nism. Although the shared-disk clusters are relatively sim-
ple to maintain the metadata consistency, they also face the
“hot files” problem and cannot cope with the unstable and
high-latency network traffic in wide-area network (WAN)
environments across different data centres [136].

In a share-nothing cluster, the metadata is distributed
across multiple independent MDSs in multiple copies. The
modification operations easily involve the metadata on mul-
tiple MDSs, and the consistency of the metadata becomes
more complex. To design a metadata cluster that can per-
form well across WAN environments, the metadata modifi-
cation operations, according to the idea of CalvinFS [136],

Fig. 10. Architecture comparison of HDFS-HA (a) and HDFS-RMS (b). It can be seen that the RMS architecture is more reliable.

Fig. 11. The design of the buddy group in BeeGFS.
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are added with distributed transaction logic and a scheduler
for locking management to synchronize the metadata logs
via the Paxos protocol [137]. The normal Paxos protocol usu-
ally requires two stages when synchronizing each piece of
metadata. In contrast, some research uses a Multi-Paxos
protocol [138] to synchronize the logs in the study of the
replica-based metadata management, reducing the number
of first-stages for network overhead reduction. Although
Google’s Chubby [139] uses this metadata management
based on the Paxos protocol to the synchronization log, it is
well known that the Paxos protocol is complex and difficult
to implement. In contrast, the Raft consistency protocol [140]
is easier to understand and simpler to implement. In Kudu
— a large open source storage engine developed by Clou-
dera, tablet replica management (TRM) is implemented
through the Raft protocol [141].

Although the separation of metadata and data makes the
read and write logic clearer, it increases the number of times
the disks are accessed. Since each metadata occupies a small
amount of storage space, the data block could be com-
pressed, leaving a small amount of space to embed the
metadata, so that the data and the metadata could be writ-
ten in one shot to reduce the disk I/O overhead. Selfie [142]
exploits this principle where the metadata of the file system
can still be quickly reconstructed by scanning the data block
and provide services for the system even if all the MDS clus-
ters crashed. Additionally, this approach can also reduce
network overhead and additional synchronization opera-
tions than copying the metadata to other MDSs.

4.3 Summary

We introduced two of the most popular high-availability
techniques in metadata management: copy-based techni-
ques and log-based techniques in this section. The compari-
sons between them are shown in Table 5 where five metrics
are compared: usability, consistency, switching time, latency,
and network overhead. As shown in the table, the copy-based
method performs better in terms of usability, switching
time, and latency, but worse in consistency and network
overhead than the log-based methods. We can attribute
these results to the fact that the copy-based methods lever-
age the network transmission between the primary node
and the standby nodes for real-time data synchronization,
thereby reducing the synchronization overheads between
these nodes. Meanwhile, the standby node can be switched
to the primary node immediately when the primary node
crashes. However, this synchronization mechanism is a
double-edged sword as it may also lead to data inconsis-
tency when the service is crashed or network packets are

lost. In contrast, the data inconsistency issue can be success-
fully avoided with the log-based methods, which could
exploit the supplemental logs to persist all the metadata
modifications, by which the MDS could be re-constructed
whenever the service is crashed.

Many DFSs [34], [75], [131] provide a flexible alternative
MDS through copy-based methods, which can apace switch
to the secondary MDS in case of the primary failure. Mean-
while, they log the metadata operations into files to recover
from these logs in the event of a failure, thus providing a
more stable and reliable MDS service. Therefore, in reality,
these two approaches—copy-based and log-based techniques
are often combined together to achieve high system reliability.
Moreover, proactive detection, localization, and failure diag-
nosis are also interesting and valuable research directions for
boosting availability. Jha et al. [143] proposed a failure detec-
tion and diagnosis framework, named Kaleidoscope, which has
been deployed on PB-Scale DFS to detect the failures from
resource overload/contention issues for the improvements of
the availability of DFS. By introducing the proactive detection
mechanism, DFS can detect failures before crashes, thereby
further improving the availability, so that detecting failures in
advance is a problemworthy of research inMDS.

In today’s era of rapid hardware performance and net-
work bandwidth development, the extra overheads from the
replication-based and log-based approaches could be negli-
gible. Instead, we are more concerned with how to detect
failures apace and recover in time. Therefore, proactive
detection, failure location, and fast switchover are expected
as the keywords in DFS availability.

5 FUTURE TRENDS

The applications of metadata are multi-perspective and
omni-directional [90], [119], [128]. In order to improve its
performance in various applications, research on efficient
and scalable technologies for the management of metadata
still demands compelling needs. This trend has been becom-
ing prominent in recent years, which is expected to manifest
itself in the three following emerging areas [31], [34], [62],
[102], [103], [144].

5.1 Ai-Based Mds

The current mainstream methods on high scalability and
high performance usually focus on specific kinds of work-
loads. As AI workloads are dominating most applications
nowadays, we would expect the design of DFS in general
and its MDS in particular to effectively support AI applica-
tions as a trend. For example, Bae et al. [145] presented Flash-
Neuron which can leverage NVMe SSD to optimize the
training process of deep learning. The empirical results
show that the proposed storage optimization can signifi-
cantly improve the throughput of deep learning algorithms.
In addition, Kumar et al. [146] proposed Quiver, which is a
caching system optimized specifically for the deep learning
framework Pytorch. Due to the nature of iterative computa-
tion, the distributed learning frameworks have some specific
properties. Some insights on how to design a customized
high-performance DFS for them can be found in [147].

Reversely, as an efficient optimization method, we would
also envision the applications of AI algorithms in the high-

TABLE 5
Comparison Between Copy-Based and Log-Based

High Availability Method

Copy-Based Log-Based

Usability Good Bad
Consistency Bad Good
Switching Time Short Long
Latency Low High
Network Overhead High Low
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performance and high-scalability technologies of MDS [98],
[148]. For instance, Gao et al. [148] presented amachine learn-
ing-based model, calledDeepHash, to take advantage of deep
learning algorithms to design a metadata locality mapping.
Moreover, from a system perspective, reinforcement learn-
ing [149] is very suitable for dynamic optimization scenarios
such as load balancing. Therefore, Wu et al. [150] proposed
MDLB—a RL-based mechanism for dynamic metadata load
balancing—to achieve efficiency and dynamic adaptability
in the load balancing ofMDS.

5.2 New Medium-Based Storage

The revolution of new materials will also bring a leap in the
performance and scalability of MDS. The emergence of new
storage (e.g., SSD and NVMe), as well as the remote direct
memory access (RDMA), dramatically improves the through-
put of metadata server clusters. And the high-speed data I/O
capabilities would undoubtedly bring a strong driving force
to the performance improvement of MDS. Therefore, we
believe these revolutions will become the crucial technology
for highly scalableMDS clusters in the future.

Compared to hard disk drive (HDD), solid state drive
(SSD) is characterized by its high storage density, low energy
consumption, good read and write performance, and poten-
tial being directly used in user space without going through
the kernel, rendering it greatly useful to improve the perfor-
mance of the file storage system. Given these advantages,
numerous recent research efforts have focused squarely on
adopting SSD as theDFS substrates [38], [43], [45], [151], [152].

CosaFS [43] is a typical file system built on top of hetero-
geneous storage devices, which combines SSD and shingled
magnetic recording (SMR) [153] technologies to improve
the I/O performance. At present, the mainstream SSD stor-
age is the hash-based Key-Value SSD. Although its perfor-
mance is promising, maintaining a hash table in its
controller DRAM usually results in inconsistent tail latency
and throughput. To fully unleash the potentials of SSD, Im
et al. [130], [154] presented PinK—a LSM-Tree-based KV-
SSD—to avoid the impact of hash conflicts on performance.
Notably, Lee et al. [155] proposed a new technology, called
SmartSSD—a SSD with an onboard FPGA to provide
computational capacities inside SSD. SmartSSD is expected
to be a potential revolution to DFS.

Emerging as cutting-edge technology with higher read
and write speed than SSD, non-volatile memory (NVM)
contributes a significant promotion to file system perfor-
mance and it is often regarded as the next-generation stor-
age substrate. Therefore, Ziggurat [151] integrates SSD with
NVM, instead of SMR, to design a file system that can pro-
vide multiple times performance improvement over those
on SSD alone. Unlike CosaFS and Ziggurat, ZoFS [45] is
completely built on top of NVM and leverages a new
abstraction, named Coffer, to enable user-space libraries to
take full control of NVM in attempting to break the perfor-
mance bottleneck of the kernel-level NVM. Although for
these systems, the results of adopting new medium are
promising, it is not clear how these techniques are extended
to large-scale distributed storage systems.

Unlike the above research, PolarFS [38] is a distributed
file system advanced by the Alibaba Cloud, it takes full
advantage of the emerging techniques like RDMA, NVMe,

and storage performance development kit (SPDK) to maxi-
mize I/O performance in a large scale, which bears some
similarities in spirit with Ceph, which is also extended with
NVM and RDMA for I/O performance improvements.
Assise [152] takes one step further to gain a new insight into
how DFS performance is optimized using NVM on the cli-
ent-side with experiments to show its performance advan-
tage over the NVM version of Ceph.

While new technologies such as NVM and burst buf-
fers [156] improve the performance of DFS, they also require
researchers to rethink their approaches with respect to data
management and I/O operations. Wu et al. [150] provides a
more detailed description of the strengths and weaknesses
of the new storage materials.

5.3 Non-Metadata Service

As for the availability, massive logs and/or data stream
backups are required for data consistency in current MDS-
based DFSs. Not only does this implementation waste a lot
of resources, but the failure of the metadata servers also
remains a major barrier to availability. Compared with non-
MDS-based DFS, DFS with MDS would employ additional
metadata servers, which in turn increases the critical path for
data access. Thus, server crashes (specifically, metadata serv-
ers) would not only adversely impact the I/O performance
but also potentially disrupt the availability of DFS for data
access. In contrast, in non-DFS, client often adopts hash func-
tion to locate data, avoiding the unavailability caused by the
breakdown of metadata servers. Therefore, as an alternative,
the non-MDS architecture would become a vital exploration
that tends to improve availability in the future.

Ideally, this model can also significantly increase the
scalability of the system, enabling the system to achieve lin-
ear expansion and growth in terms of concurrency and per-
formance. We believe that the main obstacles of the non-
metadata service model may be complex data consistency
issues and operations such as inefficient file directory tra-
versal. In addition, the MDS model also greatly reduces the
system’s ability to globally monitor, and at the same time
increase the client’s workloads (such as the calculation of
file location). How to effectively solve these problems is
worthy of further study.

Additionally, for practical applications, the metadata
management should not be limited to system-level informa-
tion. The value-added technology of metadata still has a
broad space for development in various specific applications,
such as file systems with compression and reduplication, file
systems with encryption and security, and so on. Under the
condition of ensuring the expected functionality, how to
achieve high-efficiency scalability is an important prerequi-
site for DFS to be deployed and applied in a large scale, and
thus, it is worthy of further research and exploration.

Finally, with the advent of the Big Data era, the amount
of data is growing exponentially, and the file system at PB-
level is gradually failing to meet the demand for storage
capacity. The current large-scale file system is designed pri-
marily for EB-level data volumes. In this case, the manage-
ment of the amount of metadata should also reach the PB-
level, correspondingly, which is the level of the previous
data volume. This level of metadata undoubtedly poses a
huge challenge to metadata management techniques.
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6 CONCLUSION

In this paper, the state of the art of metadata management in
large-scale distributed systems is studied from three aspects:
high scalability, high performance and high availability. The
advantages and disadvantages of various technologies are
comprehensively compared and the future direction is also
discussed and commented. It can be seen from the study that
high scalability is still the most important area in DFS studies,
compared to high performance and high availability. The
research focuses squarely on how to balance the namespace
access loads and how to achieve resource resiliency. The cor-
responding technologies can be extended to some other
aspects as well. Although the existing technologies have
achieved scalability to some extent in the face of the rapid
growth of Big Data, there are still huge gaps and challenges
relative to the demands on them. This forces us to consider
the management of metadata from a deeper perspective so as
to develop a technological framework tomeet the needs of the
demands today andmore so—tomorrow.
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