
Cost-Driven Data Caching in Edge-Based
Content Delivery Networks

Yang Wang , Hao Dai , Xinxin Han, Pengfei Wang , Yong Zhang , and Chengzhong Xu , Fellow, IEEE

Abstract—In this paper we study a data caching problem in edge-based content delivery network (CDN) where a data item is shared

between service requests. Instead of improving the hit ratio with respect to limited capacity as in traditional case, we study the problem

based on a semi-homogeneous (semi-homo) cost model in the edge-based CDN with monetary cost reduction as a goal. The cost

model is semi-homo in the sense that all pairs of caching nodes have the same transfer cost, but each has its own caching cost rate. In

particular, given a stream of requestsR to a shared data item in the edge network, we present a shortest-path based optimal off-line

caching algorithm that can minimize the total transfer and caching costs within OðmnÞ time (m : the number of network nodes, n : the

length of request stream) in a proactive fashion. While for the online case, by extending the anticipatory caching idea, we also propose

a 2-competitive online reactive caching algorithm and show its tightness by giving a lower bound of the competitive ratio as 2� oð1Þ for
any deterministic online algorithm. Finally, to combine the advantages of both algorithms and evaluate our findings, we also design a

hybrid algorithm. Our trace-based empirical studies show that the proposed algorithms not only improve the previous results in both

time complexity and competitive ratio, but also relax the cost model to semi-homogeneity, rendering the algorithms more practical in

reality. We provably achieve these results with our deep insights into the problem and careful analysis of the solutions, together with a

prototype framework.

Index Terms—Data caching, edge-based CDN, shortest-path algorithm, anticipatory caching, competitive analysis

Ç

1 INTRODUCTION

AS THE volume of data across the globe is constantly
growing up, especially with mobile devices (e.g.,

smartphone and tablet PC) gaining popularity to access,
data service as a mainstream application has been inspir-
ing great interest to people [2], [3]. As such, it is more
important than ever for the service providers, given the
dynamic nature of the Internet, to guarantee the quality of
service (QoS) and improve the experience of users as well.
Content Delivery Network (CDN) [4], [5] is a commonly
used technique to deliver copies of content to end users in
a cost-effective way. Typically, it achieves this by shipping
the content from an origin server to a set of geographically
distributed cache servers, and then redirecting the client
requests to the most optimal cache server with an attempt
to cut down bandwidth costs while ensuring reliable con-
tent delivery.

Currently, most CDN servers are deployed at points of
presence (PoPs) in the internet exchange (IXP) or at distrib-
uted data centres with an aim to improve the reachability,
which is more of bringing contents to more areas in the
world, not necessarily with faster processes. However, with

the prevalence of data services in different domains, this
architecture is in facing of growing challenges.

First, the distribution of the servers is too centralised,
far away to satisfy the requirements of some time-critical
services [6], [7], for example, the users in gaming always
expect real-time responses, and even a few milliseconds
of delay in download speeds could significantly compro-
mise his/her quality of experience (QoE). Second, as more
smart applications are deployed [8], [9], the CDN architec-
ture is often required to design with more compute
resources integrated with the storage cache for its func-
tional augmentation, more than just simply bringing data
closer, for example, an image CDN for websites can be
enabled to calculate how its cached images will appear in
different user’s gadgets [3].

To fulfill these requirements, the traditional CDN archi-
tectures need to be expanded to not only enforce the reach-
ability but also boost the efficiency with respect to the
content delivery as its latency may be a determinant for the
overall quality of service.

As edge computing is gaining its momentum, this expan-
sion can be naturally attained by integrating with edge net-
work as it is not only distributed much closer to users but
also more concerned with bringing processes to the devices
it will serve. With this expansion, one can leverage the com-
bined expertise of both CDN and edge computing to pro-
vide fast and adaptive contents to its users across the globe
as in image CDNs. As a result, both reachability and effi-
ciency can be achieved for content delivery. Given these
benefits, a lot of companies are currently taking edge com-
puting as a viable mean to improve CDN, which results in
so-called Edge-based Content Delivery Network (edge-based
CDN) [6], [10], [11], [12], [13], [14], [15].

� Yang Wang, Hao Dai, Xinxin Han, Pengfei Wang, and Yong Zhang are
with the Shenzhen Institutes of Advanced Technology, Chinese Academy
of Sciences, Shenzhen 518055, China. E-mail: {yang.wang1, hao.dai, xx.
han, pf.wang, zhangyong}@siat.ac.cn.

� Chengzhong Xu is with the State Key Lab of IoTSc, Department of Com-
puter Science, University of Macau, Macau SAR 999078, China.
E-mail: czxu@um.edu.mo.

Manuscript received 12Mar. 2021; revised 23 Aug. 2021; accepted 24 Aug. 2021.
Date of publication 30 Aug. 2021; date of current version 3 Feb. 2023.
(Corresponding author: Yong Zhang.)
Digital Object Identifier no. 10.1109/TMC.2021.3108150

1384 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 3, MARCH 2023

1536-1233 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0003-1018-2162
https://orcid.org/0000-0003-1018-2162
https://orcid.org/0000-0003-1018-2162
https://orcid.org/0000-0003-1018-2162
https://orcid.org/0000-0003-1018-2162
https://orcid.org/0000-0002-9139-5399
https://orcid.org/0000-0002-9139-5399
https://orcid.org/0000-0002-9139-5399
https://orcid.org/0000-0002-9139-5399
https://orcid.org/0000-0002-9139-5399
https://orcid.org/0000-0002-8730-3711
https://orcid.org/0000-0002-8730-3711
https://orcid.org/0000-0002-8730-3711
https://orcid.org/0000-0002-8730-3711
https://orcid.org/0000-0002-8730-3711
https://orcid.org/0000-0001-9480-0356
https://orcid.org/0000-0001-9480-0356
https://orcid.org/0000-0001-9480-0356
https://orcid.org/0000-0001-9480-0356
https://orcid.org/0000-0001-9480-0356
mailto:yang.wang1@siat.ac.cn
mailto:hao.dai@siat.ac.cn
mailto:xx.han@siat.ac.cn
mailto:xx.han@siat.ac.cn
mailto:pf.wang@siat.ac.cn
mailto:zhangyong@siat.ac.cn
mailto:czxu@um.edu.mo


However, to exploit these benefits, some new challenges
have to be addressed before the edge-based CDNs can be
widely deployed. Traditionally, operators are locked out of
the commercial model for CDN services as they are often
hosted in data centres or IXPs, not within the mobile edge
network. However, with the edge-based CDN introduced,
telcos could play a more significant role in the CDN ecosys-
tem and more revenue from their networks and serv-
ices [16], [17]. As a result, the TTL-based content caching
scheme in current CDN is highly desired to optimize for
cost-effective uses of the edge network—not only accelerat-
ing the transfer of data items with the reduced number of
requests to the central origin but also minimizing the total
service cost. As such, how to design an optimized caching
schedule for sharing of data items between the requests
received by each server with minimum monetary cost in
content delivery edge is a highly desirable problem, which
is also the goal of this paper [18], [19].

To this end, we model the optimization problem as a
caching problemwhere a fully-connected network is assumed
to share a set of data items via caching, transferring, and
replicating operations among a group of cache servers (i.e.,
the network nodes) to minimize the overall service cost for
a sequence of incoming requests. In particular, the cost
model considered in our case is semi-homogeneous (semi-
homo model for short), which means the transfer cost
between any pair of cache servers in CDN is identical while
the caching cost per time unit at each individual server is
different. The semi-homo cost model in our study is practi-
cal as the billing policy for data storage and transfer in the
edge is often borrowed from its cloud counterpart as in Ali-
Cloud [20], whose prices are typically fixed on per unit size
of the data within a region, regardless of the exact locations
on the same region [21].1

Based on this model, we first propose an optimal proactive
caching (pro-caching) algorithm for edge-based CDN, which
is able to schedule a shared data item ahead of its expected
requests across a group of caches with minimum cost in a
long term. This algorithm is by nature off-line, and effective
for the edge-based CDNwith push network as its outsourcing
strategy. We achieve the pro-caching algorithm by develop-
ing a new idea to reduce the caching problem to a simple
shortest path problem in a directed weighted graph, which is
derived from standard instance graph by carefully adjusting
the edge weights in its defined shadow regions. Although the
algorithm is effective in both time and space complexities
and optimal in cost reduction, it relies heavily on the avail-
ability of pre-defined sequence of requests, which is not
always feasible in practice unless an accurate predictor for
the long-term requests can be achieved [22], [23].

To address this issue, we then investigate this problem in
its online form and obtain an online reactive caching (re-cach-
ing) algorithm with 2-competitive ratio by extending the
concept of anticipatory caching [24] to the semi-homo cost
model. The algorithm is amenable to the edge-based CDN
with pull network as its outsourcing strategy (see next

section). To show the tightness of the competitive ratio, we
also prove the lower bound of 2� oð1Þ for any deterministic
online algorithm.

Although each respective algorithm is effective to its own
case, an algorithm that combines the advantages of both
proactive and reactive strategies could be more beneficial
when it comes to fully exploit the potentials of edge-based
CDNs while reducing their service costs. To this end, we
also design a hybrid algorithm that integrate both of the
algorithms. Our trace-based empirical studies show that the
proposed algorithms, both proactive and reactive, not only
ameliorates the experience of users by improving the QoS
of content access, but also reduces the costs for service pro-
viders. As such, it is essential to the success of edge-based
CDNs.

In summary, based on a semi-homo cost model, we for-
mulate the data sharing in content delivery edge as an opti-
mization problem of collaborative caching in a fully
connected edge network, and make the following contribu-
tions to address this problem in this paper.

1) By following the shortest-path idea, we design a fast
optimal off-line pro-caching algorithm, which can
cache and transfer the shared data item in a m-node
network to serve a n-length request sequence within
OðmnÞ time complexity.

2) With the concept of anticipatory caching, we further
present an efficient 2-competitive re-caching algo-
rithm for the online case and show its tightness by
giving a lower bound of 2� oð1Þ for the competitive
ratio of any deterministic online algorithm.

3) To combine the advantages of both pro-caching and
re-caching algorithms, we also develop a hybrid
caching algorithm by integrating them as a whole,
and investigate it with respect to a simulated edge
network.

4) We conduct an empirical study by comparing our
algorithms with some existing ones to evaluate our
findings. The results not only validate the theoretical
aspects of our algorithms, but also reveal our algo-
rithms are feasible and practical in reality.

The organization of the paper is as follows: we introduce
some background knowledge regarding the edge-based
CDNs in Section 2, and present the caching notation and
analyze the problem in Section 3. After that, we propose our
optimal pro-caching algorithm in Section 4 and competitive
re-caching algorithm in Section 5, which are followed by the
combination of both algorithms in Section 6 and the empiri-
cal studies to validate the findings in Section 7. Finally, we
survey on some related work in Section 8 and conclude the
paper in the last section.

2 BACKGROUND KNOWLEDGE

In this section, we introduce some background knowledge
regarding the edge-based CDN and rephrase the problem
in a more formal way that motivates this research.

A CDN is typically composed of an origin sever and a set
of geographically distributed cache servers (aka surrogate
servers) to deliver contents to end users at minimum cost.
The origin server is a powerful storage system that is

1. Alibaba has been deploying its edge services around its AliCloud,
which adopts a flexible charging model that allows the cloud and its
edge to have the same charge rate for coordinating the computation
between the cloud and its edge [20].

WANG ETAL.: COST-DRIVEN DATA CACHING IN EDGE-BASED CONTENT DELIVERY NETWORKS 1385

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



usually managed by content provider to host all the data
items and/or their metadata for delivery while the cache
servers are surrogates that replicate these data items from
the origin server and cooperate with each other to improve
the delivery efficiency. A typical architecture of CDN is
shown in Fig. 1 where the components of CDN as well as
the request routing mechanism are illustrated:

1) user makes a request r1 by specifying its URL in his/
her web browser, which is directed to the origin
server;

2) upon receiving the request, the origin server only
returns the basic content (e.g., index page) that it can
serve;

3) while for other frequently accessed items, the origin
server redirects the request to the CDN provider for
further processing;

4) as soon as the request is received, the CDN provider
designates the ’closest’ cache server s1 according to
its selection algorithm to provide those requested item;

5) the designated cache server s1 serves request r1
directly if the requested data item is cached, other-
wise, it gets the item from the origin server and
caches it locally with a time-to-live (TTL) value for
future re-uses.

As shown in Fig. 1, it is CDN that handles user’s traffic,
not the origin server, since the cache servers are always pop-
ulated with and pass around the data items from the origin
server. Basically, for the CDN, there are two distinct content
outsourcing practices inherited from traditional CDN: push-
network and pull-network. Push-network proactively pushes
content from the origin server to a group of cache servers
for efficient delivery at minimum cost while pull-network,
whether or not there is collaboration between peering surro-
gates for the data discovery in cache miss, is instead reactive
by nature wherein a data item is cached only when it is
requested on demand.

The study in this paper devotes to the data delivery for
both outsourcing networks with minimizing the total cost
as an ultimate goal. Since updated data items are always
outsourced to delivery network from the origin server, the

outsourcing costs in both networks can be viewed as fixed
constants with equal value. Consequently, we can only con-
centrate on the optimization of the caching schedule in the
delivery network. To this end, the edge-based architecture
as shown in Fig. 1 should be extended to including the func-
tionality that allows the shared data item to be cached in a
group of cache servers, according to an optimized schedule
for serving request sequences made proactively or reac-
tively with minimum total cost.

By following the example in Fig. 1, we further demon-
strate how the edge-based CDN works in our case. Suppose
another request r2 is made to the same data item after r1, it
is first directed to the closest cache server s3. Unfortunately,
the item is not presented in that server. Thus, in a traditional
case, the cache server would forward the request to the
site’s origin server. However, in our case, the item is trans-
ferred from s1, which is represented by “T” in the figure,
reducing the traffic to the origin server. After that, r3 is com-
ing, it is still served by the copy cached in s1, denoted by
“C”. By the same argument, the following requests,
r4; . . . ; r12 are satisfied either by transfer or by caching. Note
that the red color indicates that the corresponding cached
data item is deleted after being accessed. As such, the next
request at the same server should be served by a transfer
(e.g., r7@s3). The goal is to satisfy the request stream with
minimum cost when the semi-homogeneous cost model is
assumed.

3 CACHING SCHEDULE PROBLEM

With the understanding of the edge-based CDN, we can
define an instance of the caching schedule problem as a 4-
tuple I ¼ P;R;Q;Vð Þ, where

1) P ¼ fs1; . . . ; smg is a set of servers embedded in a
fully connected network supplying a data item sub-
ject to requests.

2) R ¼ < r1; . . . ; rn > is a request vector. Each request
is made at a specified time and to a specified server,
thus ri ¼ ðsi; tiÞ and the vector is ordered so that ti �
tiþ1. Note the use of subscripts for references versus
superscripts for labels, e.g., si ¼ sj 2 P.

3) Q ¼ f�ij : 1 � i 6¼ j � mg is the set of non-negative
transfer costs from si to sj.

4) V ¼ fmi : 1 � i � mg is the non-negative cost per
unit time to store the item on the indicated server.
These rates do not vary with time.

To simplify boundary conditions, we extend the request
vector to assume the data item is initially (at time t0) cached
at s1 and the initial (dummy) request is r0 ¼ ðs1; 0Þ. Thus,
the cost of serving the initial request is 0.

We define a data item transfer Trðsi; sj; xÞ from server si
to sj at time x, and indicate a copy of the data item is cached,
or held in cache on server s from time x to y using the nota-
tion of Hðs; x; yÞ. Note that in this model, we are not con-
cerned with the problem of obtaining the pre-defined
request stream as it is realistically solvable by using off-line
profiling and/or historical logging. Also, we do not con-
sider the characteristics of the requests such as their sizes,
which may have impact on the QoS of data accesses, but not
relevant to our goal—minimizing the total costs for service

Fig. 1. Architecture and request routing in a CDN environment where
three caching servers (squares) are fully connected by an edge network
with a shared data item initially located at the origin server, which can
then be cached at s1 via a pull operation to load (“L”), thereafter, trans-
ferred (“T”), replicated, cached (“C”), or deleted to satisfy request stream
R ¼ < r1; . . . ; r12 > in time order with minimum cost.

1386 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 3, MARCH 2023

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



providers to serve pre-defined request streamR via caching
and transfer as exemplified in Fig. 1.

Definition 1 (Schedule). We say that a schedule S is any
minimal set of caches and transfers satisfying

1) At least one server is caching the data item at any time
t; t0 � t � tn.

2) The data item is available for rj on sj at time tj; 1 �
j � n. We assume transfer time is negligible, thus we
can satisfy this by a transfer at time tj. This assump-
tion can be validated by tweaking the instance graph
(discuss later) as shown in [25], and is thus often
adopted in previous studies [25], [26], [27].

For a given schedule S, the cost of the schedule, CðSÞ, is
the sum of the cache and transfer costs in the schedule,
which can be recursively define its cost as follows,

Definition 2 (Schedule Cost). Suppose there are n requests in
S, and Si represents the schedule of requests from r1 to ri, with-
out loss of generality, we can assume CðS1Þ ¼ 0, then we have

CðSiÞ ¼ CðSi�1Þ þ CðSi�1;SiÞ;

here, CðSi�1;SiÞ is the cost to serve request ri from schedule
Si�1 at time ti�1 to serve ri�1 via caching and/or transfer.
Clearly, CðSÞ ¼ CðSnÞ.
We use G to represent the space of the schedules for R,

and then define optimal schedule, which is our goal to find,

Definition 3 (Optimal Schedule). An optimal schedule S� is
the schedule S that satisfies

CðS�Þ ¼ minS2GfCðSÞg:

Note that the requirement that a schedule is minimal
does not imply that it is optimal.

The data caching problem with heterogeneous cost
model is a variant of the Rectilinear Steiner Arborescence prob-
lem [28]. As such, it is believed to be NP-complete [27].
However, its formal proof still remains open. Fortunately,
in some restricted settings, we can expect optimal solution
to this problem. The following is a restricted cost model
regarding the cache and transfer for which we can have fast
optimal algorithms.

Definition 4 (Semi-Homogeneous Cost Model). We
assume the cache cost is heterogeneous, denoted by mi whose
value is different from server to server, but transfer cost �ij ¼
� is constant for all pairs of servers. For convenience we also
assume that all requests occur at distinct times, so that
8i; ti < tiþ1.

For the remainder of this paper we mainly consider the
semi-homo model as this model well fits in with the actual
situation where transfer cost of a unit of data between any
pair of network nodes is fixed. As such, with this billing pol-
icy, the transfer cost of the shared data item in our problem
is identical between any pair of network nodes. For quick
reference, we summarize the frequently used symbols in
Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TMC.2021.3108150.

4 A PROACTIVE OFF-LINE ALGORITHM

Based on the problem definition, in this section we propose
an efficient off-line algorithm, called Proactive Caching (pro-
caching) algorithm, with OðmnÞ time and space complexities
(m: network size, n: sequence length). To this end, we first
define two major concepts —standard schedule and instance
graph, then make several key observations on this problem,
and finally reduce the caching problem to a shortest path-
based problem.

4.1 Standard Schedule and Instance Graph

We can cast a schedule as a directed graph where the edges
are caching intervals and transfers, and the vertices are
requests and end points of transfers. Note that since a
schedule is a minimal set, it implies that this graph is a tree.
If there is more than one path from r0 to ri then at the last
juncture of paths, at least one of the entries must be a trans-
fer which can be deleted without loss of service and thus
such a graph cannot be minimal. Also, a schedule will con-
tain no dead-end caches, that is no cache on a server beyond
the last request or transfer time from that server.

In general transfers could occur at any time point, so to
make the search discrete we use the following lemma.

Definition 5 (Standard Schedule). We say that a schedule is
a standard schedule if every transfer occurs at a request time
ti with either its output end or its input end on server si; that
is, it starts or ends at a request.

With this definition, it is not difficult to deduce that given
a schedule S, there exists at least one standard schedule Sstd
with cost CðSstdÞ � CðSÞ.

Also noted previously that every schedule is a tree (e.g.,
Fig. 2), we can immediate have the followings.

Observation 1. In any optimal standard schedule, each request
ri will be served by either the cache (i.e., the cached copy) on si
or by a single transfer ending at ri.

Given this observation, we are now viewing a schedule
from a space-time diagram of view, called Instance Graph as
follows, where the edges are caching intervals or transfers,
and the vertices are requests or end points of transfers.

Definition 6 (Standard Instance Graph). We define a stan-
dard instance graph as a weighted directed graph G ¼
ðV;E;WÞ where V ¼ fvij : 0 � i � n; 1 � j � mg. Vertex vij
corresponds to time ti on server sj. The edge set E consists of
two subsets: the set of cache edges C ¼ fðvij; viþ1;jÞ : 0 � i <
n; 1 � j � mg and a set of transfer edges T . The transfer edges
are bi-directional T ¼ fðvij; vikÞ; ðvik; vijÞ : j 6¼ k; and ðsi;
tkÞ 2 Rg. The edge weights W are defined as WðeÞ ¼ � for
edges e 2 T and WðeÞ ¼ mjðtiþ1 � tiÞ for edges
ðvij; viþ1;jÞ 2 C.

An example of a standard schedule in the instance for a
stream of requests is shown in Fig. 2 where the caching cost
and the transfer cost are 1:4m1 þ 0:2m2 þ 3:2m3 ¼ 8:4 and
4� ¼ 20:0, respectively, here m1 ¼ 1;m2 ¼ 3;m3 ¼ 2 and
� ¼ 5.

Notice that a request ri in the instance will correspond to
vertex vi;si in the instance graph. For convenience we will
often refer to request vertices ri. All other vertices we call

WANG ETAL.: COST-DRIVEN DATA CACHING IN EDGE-BASED CONTENT DELIVERY NETWORKS 1387

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TMC.2021.3108150
http://doi.ieeecomputersociety.org/10.1109/TMC.2021.3108150


intermediate vertices. The set of vertices vi� induce a sub-
graph that is a bi-connected star centred on the request ver-
tex ri (e.g., see how server s3 at t4 connects to other servers
in Fig. 4).

4.2 Proactive Caching Algorithm

We now show how to solve the caching problem by reduc-
ing it to a simple shortest path problem. To motivate this
approach, we observe that any standard schedule S can be
represented as a sub-graph G0 ¼ G½S� � G of the standard
graph, with cost CGðG0Þ ¼ CðSÞ where CGðG0Þ is the sum of
the edge costs in G0.

As noted previously, any schedule is a tree there will be a
unique directed path r0 ! rn in the schedule. Alternatively,
for any r0 ! rn path in G, we can create a schedule by add-
ing an edge of cost at most � for each ri not in the path. Since
different paths would cover different sets of request verti-
ces, the cost added would be different for different paths as
shown in Fig. 3, where path1 and path2 cover different sets
of request vertices.

Suppose that we modify G by subtracting � from the
weight of each edge ending on a request vertex. Now given
any r0 ! rn path P we can create a schedule of cost n� plus
the cost of P in this modified graph. Note that �n is inde-
pendent of the path P . Unfortunately, this schedule may
not be optimal over the set of schedules containing P as
some of the requests not on the path could be more cheaply
served by caching than by transfer. This is evidenced by
those request vertices in cycles in Fig. 3. Thus, this schedule
construction is not sufficient.

To address this issue, we have to analyze the reduction of
the edge weights in the standard graph. To this end, we
define two useful concepts server caching cost and forward
cost for vertex vij, corresponding to a request or a non-
request, in the graph.

Before defining the concepts, we first define some nota-
tions. For vij, we denote the previous request index to be

pðvijÞ ¼ maxfk : k < i; vkj is a request vertexg
L if no request on sj prior to ti

�
:

Similarly, we denote the next request index to be

hðvijÞ ¼ minfk : k � i; vkj is a request vertexg
L if no following request on sj

�
:

Note that if a vertex is a request vertex ri then hðriÞ ¼ i.

Then with these notations, we can define the server cach-
ing cost and the forward cost for vij (again, vij could be a
non-request vertex) as follows,

Definition 7. The server caching cost for vij is

sðvijÞ ¼ þ1; pðvijÞ ¼ L
mjðti � tpðvijÞÞ; otherwise

�
;

and similarly, the forward cost for vij to serve the next request
hðvijÞ on the same server is

dtvij ¼
þ1; hðvijÞ ¼ L
mjðthðvijÞ � tiÞ; otherwise

�
:

As such, for request vertices, dtri ¼ 0.

Accordingly, we can immediately have the following
definition:

Definition 8 (Marginal Request Cost). The marginal cost of
request ri is bi ¼ minf�; sðriÞg; 1 � i � n. We define the total
cost B ¼Pn

i¼1 bi, which is the lower bound of the cost to satisfy
the request vectorR.
With these concepts, we develop our new idea that,

instead of subtracting � from the weight of each edge end-
ing on a request vertex vij, subtracts bh or bh � dtvij , depend-
ing on whether vij is a request vertex or not, where
h ¼ hðvijÞ, meaning the next request after vij on server sj is
rh. However, this subtraction is not necessary to apply to
the edges ending on every non-request vertex. Only should
those in a specific region (i.e., shadow region defined later)
that is covered by bh from rh (i.e., dtvij < bh) is considered
since the weight of each edge ending on such a vertex is
affected by subtracting bh from the weight of edges ending
on rh.

To be more clearly, we define a directed weighted graph
Gr ¼ ðV;Er;WrÞ derived from the standard graph G ¼
ðV;E;WÞ that will support the desired reduction. We use
the same vertex set V as well as Er ¼ E.

Notably, it is sufficient to set Er ¼ E, although some effi-
ciency gain might be possible by reducing the number of
edges in Er as indicated in the following lemma,

Lemma 1. A transfer edge ðvik; vijÞ can never be part of any opti-
mal schedule if sðvijÞ < �.

Proof. If a schedule contains such a transfer edge, it can be
replaced by a cache from the request prior to vij on the
same server at reduced cost. tu
Based on Lemma 1 we can define the edge set of Gr by

Er ¼ E n fðvik; vijÞ : sðvijÞ � �g. Note we allow equality in

Fig. 2. An example of a standard schedule (shown in bold lines) for a pre-
defined request stream (solid dots along time-line). Vertical lines repre-
sent transfers that end on requests. The optimal cost is 1:4m1 þ 0:2m2 þ
3:2m3 (caching cost) þ4� (transfer cost) ¼ 1:4þ 0:6þ 6:4þ 20:0 ¼ 28:4
(m1 ¼ 1;m2 ¼ 3;m3 ¼ 2 and � ¼ 5).

Fig. 3. An example to show different paths from r0 ! rn could miss dif-
ferent sets of request vertices. Each of the missed requests in cycles
can be served either by a cache or by a transfer.

1388 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 3, MARCH 2023

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



this definition since in that case we can also use a cache
instead of a transfer. Given Gr, we can formally define
shadow region for request ri as follows,

Definition 9 (Shadows). For request ri on server sj, we define
the transfer shadow set of edges as ST ðriÞ ¼ fðvik; vijÞ 2
Tr : ri ¼ hðvijÞ; dtvij < bhðvijÞ; k 6¼ j; k � mg. Similarly, we
define the caching shadow set of edges as SCðriÞ ¼
fðvi�1;j; vijÞ 2 Cr : ri ¼ hðvijÞ; dtvij < bhðvijÞg: Finally,
SðriÞ ¼ SCðriÞ [ ST ðriÞ.
Based on this definition, we can observe that 1) in both

cases, vij is a non-request vertex if vij 2 ðrpðiÞ; riÞ on sj, and
2) the shadow sets are non-intersecting, i.e.,
SðriÞ \ SðrjÞ ¼ ? ; i 6¼ j.

As discussed above, the idea is that for each request ver-
tex ri in Gr we reduce the weight of edges in a shadow
region, where the shadow consists of edges in paths leading
to ri. The vertices falling in the shadow region of ri (includ-
ing ri) could cache a copy to serve ri via caching or transfer.
Informally, the shadow region for a request is characterized
by a region in the instance graph and the request could be
served by the cached copies in that region. As such, accord-
ing to our discussion, the weights of the incoming edges to
that request have to be adjusted accordingly.

We show an example in Fig. 4 where four requests are
made by four servers at different time. In this example, we
use � ¼ 10, m3 ¼ 1 and assume that t2 ¼ 4, t3 ¼ 8 and t4 ¼
11. Thus, b4 ¼ 11� 4 ¼ 7 of v43, which is greater than dtv33 ¼
11� 8 ¼ 3. As a result, the vertex v33 falls in the shadow of
v43 and the weights of its incoming edges as well as those of
v43 have to be adjusted according to (1) and (2). In the figure,
the shadow edges have labels showing their resultant costs.

We can now define the weight function Wr for the edges
of Gr. We will consider edges ending on a vertex vij. All
edges leading towards rh (h ¼ hðvijÞ) within distance bh
(i.e., dtvij < bh) will have their costs reduced as follows.

First, we consider the transfer edges that have the form
er ¼ ðvik; vijÞ 2 Tr

WrðerÞ ¼
�; h ¼ L
�; dtvij � bh
�� ðbh � dtvijÞ; dtvij < bh

8<
: : (1)

Observe that if bh ¼ � (dtrh ¼ 0) then the cost will be
reduced to 0 on transfer edges ending on request rh. More-
over, each distinct dtvij is added to the weight of its

corresponding transfer edges as shown in Fig. 5. The edge
weights between vij and rh should be 0.

Let us first examine the transfer edges toward r4 (request
at v43) in Fig. 4. In this case, b4 ¼ 7 and dtv43 ¼ 0, then accord-
ing to (1), Wrðe4Þ ¼ �� ðb4 � dtv43Þ ¼ 10� ð7� 0Þ ¼ 3. Then
we look at the case of v33, a non-request vertex. As dtv33 ¼ 3,
which is less than b4 ¼ 7, we have Wrðe3Þ ¼ �� ðb4�
dtv33Þ ¼ 10� ð7� 3Þ ¼ 6.

Then, for each vertex vij; i > 0 there will be one cache
edge e0r ¼ ðvi�1;j; vijÞ 2 Cr ending on vij. Let m̂ ¼ mjðti �
ti�1Þ, which is the weight of the corresponding edge in G

Wrðe0rÞ ¼
m̂; h ¼ L
m̂; dtvij � bh
m̂� ðbh � dtvijÞ; dtvij < bh < dtvi�1;j
0; dtvi�1;j � bh

8>><
>>: : (2)

Note that no edge in Gr has negative weight, and all
edges in SCðriÞ except the first (the red interval in Fig. 5)
have cost zero (the cyan intervals in Fig. 5). This is because,
as shown in Fig. 5, the weights of er ¼ ðvi�1;j; vijÞ within bh,
i.e., dtvijs, have been added to either the corresponding
transfer edges ðvik; vijÞ 2 Tr or the caching edge ðvi�1;j; vijÞ 2
Cr. In the example, for both v33 and r4, their forward costs (7
and 3, respectively) are not greater than b4 ¼ 7. Therefore,
Wrðe03Þ ¼Wrðe04Þ ¼ 0.

From Fig. 5, one can see that the weight of each edge in
Gr is uniquely defined by (1) and (2) by which the path
length can be correctly computed no matter how the path
reaches rh if a single entry into its shadow is performed.

Definition 10 (Reduced Graph Costs). Given a sub-graph
G0 � Gr we define the cost CrðG0Þ to be the sum of the edge
costs in G0.

Definition 11 (Multiple Entries). Let G0 � Gr induced by
the edge set E0 and let H ¼ E0 \ SðriÞ for some request ri ¼
ðti; siÞ where si ¼ sj. We say that G0 has multiple entries to the
shadow SðriÞ if there is an edge er 2 H with vkj 2 er and an
edge ðvhj0 ; vhjÞ 2 ST ðriÞ \ E0 with h > k.

Wewill need to take special care with multiple entry sub-
graphs which are paths that enter, leave and then re-enter a
shadow, and schedules which have similar multiple entries
into a shadow as shown in Fig. 6.

Fig. 4. An illustration of the shadow for a request at time t4. Requests are
shown as circles, and vertices of interest are highlighted. For this exam-
ple we use � ¼ 10, m3 ¼ 1 and assume that t2 ¼ 4, t3 ¼ 8 and t4 ¼ 11.
Thus, b4 ¼ 11� 4 ¼ 7 since 7 is less than 10. The shadow edges have
labels showing their resultant costs.

Fig. 5. Adjustments of the edges weights in Gr for request rh. The black
dots represent request vertices while the white dots are non-request
vertices.

WANG ETAL.: COST-DRIVEN DATA CACHING IN EDGE-BASED CONTENT DELIVERY NETWORKS 1389

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



Lemma 2. Let P be a r0 ! rn path in Gr with no multiple
entries into any shadow. Then there exists a schedule S such
that CðSÞ ¼ CrðP Þ þB.

Proof. We will add each ri ¼ ðsi; tiÞ inductively and its con-
tribution bi to B. The base starts with r0 which is always
in the path. For i > 0, there are two cases.

Case(i) no Intersection With Shadow. If P \ SðriÞ ¼ ? , we
note that i < n, since the path cannot reach a request
unless it intersects its shadow. There are two sub-cases.
If bi ¼ � then since ti < tn there must exist a vertex vik
on the path with k 6¼ si. We can thus add this request to
the schedule for cost bi using a transfer corresponding to
the edge vik to vi;si . If bi < �, then since by induction we
have already scheduled rpðiÞ we can add ri by adding a
cache from the previous request with cost bi.

Case(ii) Single Entry to Shadow. When the path inter-
sects a shadow in a contiguous subset, bi covers the
reduction of costs in P \ SðriÞ due to definitions (1) and
(2) (i.e., each edge in SðriÞ has been reduced by bi), or the
cost of any edge required to reach ri from this path. Note
that this holds whether ri 2 P or not. tu

Lemma 3. Let S be a standard schedule whose image in Gr con-
tains no multiple entries into any shadow. Let P be the r0 . . . rn
path induced by S. Then CðSÞ � CrðP Þ þB.

Proof. If for request ri there are no edges in P \ SðriÞ then
the cost of connecting ri to P in the schedule must be at
least bi (It may be greater in S if bi < � and a transfer is
used instead of a cache from the previous request on the
same server.).

Otherwise, P intersects the shadow using only one
entry. In this case only cache edges may be used to con-
nect ri to P (if needed) since it is only a single entry
schedule, and so the cost of the edges in the shadow,
including those in P , used in the schedule is at least bi.

Subtracting these costs from the schedule S leaves us
with the cost of at least P in Gr, then we have the
conclusion. tu

Theorem 1. The optimal schedule has cost CðS�Þ ¼
minP2GrfCrðP Þ þBg, where each P is an ro . . . rn path in Gr.

Proof. Given a path P with multiple entries to a shadow
SðriÞ, where i is minimum, we can obtain a path P 0 from
P by two operations: 1) adding any necessary shadow
cache edges from the end of the first entry to the last ver-
tex in the intersection of the path with the shadow, and 2)

deleting the edges previously used to make this connec-
tion (exemplified by the bold arrowed lines ðv23; v33Þ and
ðv33; v43Þ in Fig. 6). Since all these additional shadow cache
edges have cost zero by Definition (2), CrðP 0Þ � CrðP Þ. As
the shadow sets are non-intersecting, any subsequent
shadow in P 0 with multiple entries can be treated inde-
pendently using this method, and so there exists a mini-
mum cost path with no multiple entries to any shadow.
From this result and Lemma 2, it follows that

CðS�Þ � minP2GrfCrðP Þ þBg:

For any standard schedule S whose image in Gr has
multiple entries to a shadow SðriÞ, where i is the mini-
mum such occurrence in this schedule, there exists a
schedule S0 with cost CðS0Þ � CðSÞ obtained by replacing
the last transfer with required cache edges in the shadow
from the end of the preceding entry. From the definition
of the shadow, these cache edges will cost less than the
transfer edge. This argument can be repeated until there
is only one entry into the shadow SðriÞ. Given the
shadow sets are non-intersecting, this can be applied to
each subsequent shadow independently to obtain a
schedule S00 with no multiple entries, and CðSÞ � CðS00Þ.
Let P be the r0 . . . rn path induced by S00. From this and
Lmma 3 it follows that 8S; 9path P; CðSÞ � CrðP Þ þB
and thus CðS�Þ � minP2GrfCrðP Þ þBg. Together with the
previous inequality, this completes the proof. tu
Based on the description of this algorithm, we can easily

obtain the best result in parallel for multiple data items in
our caching context since we can apply the algorithm to
each individual item independently without concerning
with the cache capacity (again, the service cost reduction is
our goal).

4.3 An Efficient Implementation

To obtain the cost of an optimal schedule, we need to only
find the cost of a shortest r0 . . . rn path in Gr and add B. Gr

has OðmnÞ vertices and edges and can be constructed in
OðmnÞ time. Since it is well known that shortest paths in
directed acyclic graphs (DAGs) can be solved via topologi-
cal sort in linear time, that is OðmnÞ time in our case, we
show this efficiency can also be attained in the semi-homo
model.

Assume we have already found the cost of the shortest
path from r0 to each vertex at time ti�1. At time ti, the cost
of reaching the request vertex ri ¼ vi;si will be the minimum
of

1) the cost of reaching vertex vi�1;si plus the cost of the
cache edge ðvi�1;si ; vi;siÞ.

2) the minimum over j; sj 6¼ si of the cost to reach vi�1;j
+ the cost of the cache edge ðvi�1;j; vijÞ plus the trans-
fer cost � to reach ri.

The cost is dominated by 2), and is OðmÞ at each i.
For each non-request vertex vij where sj 6¼ si, the cost to

reach vij is the minimum of the cost to reach vi�1;j plus the
cache edge ðvi�1;j; vijÞ and the cost to reach ri þ �. Once the
cost of ri�1 has been computed these can be computed in
OðmÞ time also for each i.

Fig. 6. Multiple entries: the numbers along x-axis and y-axis are time
instance indices and server indices, respectively. The orange arrowed
lines depict a path with multiple entries to the shadow of rh. The dashed
orange arrowed line indicates that the path leaves and re-enter the
shadow.

1390 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 3, MARCH 2023

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



One final consideration needs to be met when we want
not just the cost of the optimal schedule but an actual sched-
ule is required. In the first part of the proof of Theorem 1 we
note that it is possible for the multiple entry path P to have
the same cost as the final single entry path. This can occur
because the edges that are removed from the path P outside
of the shadow of ri�1 may also have cost zero if they are
part of the shadow of other requests. To construct a sched-
ule, we must ensure that the shortest path we construct has
no multiple entries. This can easily be done by tie breaking
when paths are of equal length based on the number of
edges. The grid-like structure of the graph ensures that a
path that leaves and re-enters a shadow will have more
edges than one that stays in the shadow using only cache
edges.

To complete the schedule construction, at each request
we only need to find the closest connection to the path or
the preceding request which can be done in time propor-
tional to the number of edges. Thus, an optimal schedule
can be obtained in OðmnÞ time.

5 A REACTIVE ONLINE ALGORITHM

In this section, we first describe an 2-competitive reactive
caching algorithm for the online version of this problem
and then show its tightness by giving a lower bound of the
competitive ratio, which is at least 2, for any deterministic
online algorithm for this problem. We finally analyze the
complexity of this algorithm and describe briefly its
implementation.

5.1 Reactive Caching Algorithm

The algorithm is built on a concept of anticipatory caching
that, depending on the number of alive copies, allows the
copy migrated to a sever (say sj) to speculatively keep alive
for another one or two period of Dtj ¼ �=mj; 1 � j � m, after
it serves the most recent request at time t. Specifically, if
there are multiple alive copies and the next request on sj is
arriving no later than tþ Dtj, it should be served by caching
as the caching cost is no more than �. Otherwise, when a
single copy is left, its alive period is extended to tþ 2Dtj to
either serve incoming requests at most cost of 2� or be trans-
ferred to the cheapest server if no request is found in ½t; tþ
2Dtj�. After the alive period, the copy is not worthwhile to
keep alive, and the request is served by a transfer from the
cheapest server, instead.

By this way, we can enable the online algorithm to mimic
the optimal off-line algorithm as close as possible. Without
loss of generality, we assume m1 � m2 � 	 	 	 � mm, and
design an event-driven online algorithm, called Reactive
Caching (re-caching) algorithm, which operates as shown in
Algorithm 5.1 with an assumption that a data item is ini-
tially located at s1 (the cheapest one).

In the algorithm, we use variables c, initialized by 1, to
record the number of alive copies in the network, a counter
array of E½m�, initialized by zero, to maintain the copy expi-
ration information of each server in the network, e.g.,
E½j�  t indicates the copy on sj will expire at t, and tp0ðjÞ to
specify the most recent time when a request is made on
sj; 1 � j � m (Line 2).

Algorithm 1. ReCaching Algorithm

1: /* a data item is initially located at s1 */
2: Initialize: c 1;E½m�  0, 1 � j � m;
3: if (request ri arrives sj at ti) then
4: if ðE½j� ¼ 0Þ then
5: serve ri by a transfer from any sk; k 6¼ j, who has an

alive copy;
6: E½j�  ti þ Dtj;
7: c cþ 1;
8: end
9: else
10: if ðE½j� 6¼ 0Þ then
11: serve ri by the copy on sj;
12: E½j�  ti þ Dtj;
13: end
14: end
15: end
16: if (a copy expires on sj at t) then
17: if ðj ¼ 1Þ then
18: if ðc ¼ 1Þ then
19: E½j�  tþ Dtj;
20: end
21: else
22: drop the copy at t;
23: E½j�  0;
24: c c� 1;
25: end
26: end
27: else
28: if ðc ¼ 1Þ then
29: if ðE½j� � Dtj ¼ tp0ðjÞÞ then
30: E½j�  tþ Dtj;
31: if ðE½j� � 2Dtj ¼ tp0ðjÞÞ then
32: sj performs a transfer to s1;
33: drops the local copy;
34: E½j�  0;
35: end
36: end
37: end
38: else
39: if ðE½j� � Dtj ¼ tp0ðjÞÞ then
40: drop the local copy;
41: E½j�  0;
42: c c� 1;
43: end
44: end
45: end
46: end

The algorithm is driven by two events—request arrival
and copy expiration. When a new request ri arrives sj at ti
(create copies) (Line 3), we first check E½j�. If E½j� ¼ 0, we
then serve ri by a transfer from any sk; k 6¼ j, who has an
alive copy, and then update E½j� and c (Line 4-8). Other-
wise, if E½j� 6¼ 0, we serve ri by the copy on sj, and then
only update E½j� (Line 10-13);

When a copy expires on sj at t (drop copies), we check
whether it happens on the cheapest server (j ¼ 1) or not
(j > 1) (Line 16). In the former case (j ¼ 1), we further
look at if only one copy is left in the network. If c ¼ 1, we
extend the copy expiration time on sj to another period of

WANG ETAL.: COST-DRIVEN DATA CACHING IN EDGE-BASED CONTENT DELIVERY NETWORKS 1391

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



Dtj. Otherwise, we drop the copy at t and update E½j� and c
(Line 17-26).2

While in the later case (j > 1), if only one copy is left
(c ¼ 1), we then check the local copy on sj. If it has been
alive for a period of Dtj since it served the last request, E½j�
is updated, indicating the copy will be alive for another
period of Dtj (Line 28-37). However, if the copy has
been alive for 2Dtj, then sj will perform a transfer to s1,
drop the local copy, and reset E½j�. Otherwise, if there are
more than one copies alive in the network (c > 1), we
examine E½j� to see if the copy has been alive for a period of
Dtj since it served the last request. If so, we drop the local
copy, reset E½j�, and update c (Line 39-43).

An illustrative example of this algorithm is shown in
Fig. 7 where the copy on sj survives another period of time
at most Dtj ¼ �=mj for incoming requests, given Dt1 ¼
1:0;Dt2 ¼ 0:8;Dt3 ¼ 0:4, and Dt4 ¼ 0:2.

5.2 Competitive Analysis

Based on the design of the algorithm, we can make the fol-
lowing observation to conduct its competitive analysis.

Observation 2. During its execution, the online re-caching
algorithm satisfies the following properties:

1) when multiple copies exists, no copy on sj; 1 � j � m
can be kept alive for more than Dtj;

2) where there is a single copy, except for the copy on s1,
no other copy on sj; 1 < j � m, can survive a period
of time longer than 2Dtj after it serves a request;

3) at any point of time, there is always a copy to serve the
incoming request, either by caching or by transferring.

With the above results, we now have the main theorem
for the online case:

Theorem 2. The online re-caching algorithm is 2-competitive.

Proof. Let CAðriÞ define the cost of request ri obtained by
the re-caching algorithm and C�ðriÞ be the optimal cost of
request ri gained by the optimal off-line algorithm. First,
we analyze the cost ratio of request ri by considering the
following cases:

Case 1. If ri is the first request on server sj for 1 � j �
m, without loss of generality, we assume the first request
r1 is made on s1, we have CAðr1Þ ¼ m1Dt1, C�ðr1Þ ¼
m1Dt1, Thus CAðr1Þ=C�ðr1Þ ¼ 1 < 2.

Case 2. When a new request ri arrives at sj at time ti,
its cost is considered from four perspectives.

a) If ti 2 ½tpðiÞ; tpðiÞ þ Dtj� and E½j� 6¼ 0, then CAðriÞ ¼
C�ðriÞ ¼ mjDtj � �, we thus have CAðriÞ=C�ðriÞ ¼
1 < 2.

b) If ti 2 ½tpðiÞ þ Dtj; tpðiÞ þ 2Dtj� and E½j� ¼ 0, then
CAðriÞ ¼ mjDtj þ � ¼ 2� and C�ðriÞ ¼ �, we have
CAðriÞ=C�ðriÞ ¼ 2.

c) If ti 2 ½tpðiÞ þ Dtj; tpðiÞ þ 2Dtj� and E½j� 6¼ 0; c ¼ 1,
that is there is no new request ri coming and no
copy on any server other than sj who has held the
caching Dtj, according to the algorithm, the data
should be cached on sj for one more Dtj, as such
� < CAðriÞ � 2mjDtj � 2�; � < C�ðriÞ � 2�, then
we have CAðriÞ=C�ðriÞ < 2.

d) If ti > tpðiÞ þ 2Dtj and E½j� 6¼ 0; c ¼ 1, according
to the algorithm, the data item should be trans-
ferred to s1 after being held for 2Dtj. We thus
count this cost 2� into the service cost of ri. Conse-
quently, CAðriÞ ¼ mj 	 2Dtj þ 2�þ m1Dt ¼ 2�þ 2�
þm1Dt; C

�ðriÞ ¼ minf2�þ mjDt; �þ �þ m1ð2Dtjþ
DtÞg, then we have CAðriÞ=C�ðriÞ < 2.

Suppose CðRCÞ is the total cost of the first n requests
obtained by the re-caching algorithm and CðOPT Þ is the
corresponding optimal off-line cost. We then have

CðRCÞ=CðOPT Þ ¼
X
1�i�n

CAðriÞ þm�

 !
=
X
1�i�n

C�ðriÞ:

Therefore, we conclude

lim
n!þ1CðRCÞ=CðOPT Þ ¼ 2: (3)

tu
Next, we show that the competitive ratio of any deter-

ministic online algorithm is at least 2 given the semi-homo
caching model.

Theorem 3. The competitive ratio of the semi-homo caching
problem is at least 2� oð1Þ.

Proof. We construct an instance to obtain a particular lower
bound as follows: suppose there are two servers, and
m1 ¼ d, m2 ¼ 1, and � ¼ 1, where d < 1 is a very small
positive constant. For any deterministic caching algo-
rithm, we assume an adaptive adversary who can pro-
duce a sequence of requests, depending on all the actions
of the online algorithm up to the current time.

Without loss of generality, for any deterministic algo-
rithm A, it is reasonable to assume its caching time is li
after the ith request is satisfied, and then the data item is
transferred to s1 for minimum caching cost in the cheap-
est server.

At the beginning, the data item is assumed to cache in
server s1. Then, request r1 ¼ ðs2; 0Þ is coming to server s2

at t ¼ 0, which can be immediately satisfied with a trans-
fer. then there are two cases for l1:

Case 1.1. If l1 � 1, the adversary has no other request to
come. Thus, the competitive ratio is

CðAÞ
CðOPT Þ �

1þ l1 þOðdÞ
1

� 2: (4)

Fig. 7. An example of the online re-caching algorithm to illustrate a
schedule for a sequence of 6 requests (black dots) where the red line
indicates copy extension till to red cross when the copy is dropped. Note
that there is a transfer from s2 to s1 at time t ¼ 2:1 after 2Dt2 ¼ 1:6 from
t ¼ 0:5.

2. When multiple copies expire at the same time, only the one on s1

is kept while others are dropped.

1392 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 3, MARCH 2023

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



Case 1.2. Otherwise, if l1 < 1, the adversary makes a
follow-up request r2 ¼ ðs2; l1 þ tÞ, where t is a very small
interval. The caching time is l2 for r2. Similarly, there are
also two cases:

Case 2.1. If l2 � 1, there is no other coming requests,
we then have the competitive ratio as

CðAÞ
CðOPT Þ �

2þ l1 þ l2 þOðdÞ
1þ l1

� 3þ l1
1þ l1

> 2: (5)

Case 2.2. Otherwise, if l2 < 1, the adversary makes the
next request r3 ¼ ðs2; l1 þ l2 þ 2tÞ. Suppose the caching
time is l3 for r3, we can make the same arguments as
above with two cases until kth request arrives

..

.

After the kth request is satisfied, there are still two
cases:

Case k.1. If lk � 1, there is no other incoming requests.
Then the competitive ratio is

CðAÞ
CðOPT Þ �

kþ l1 þ l2 þ 	 	 	 þ lk þOðdÞ
1þ l1 þ l2 þ 	 	 	 þ lk�1

� kþ 1þPk�1
i¼1 li þOðdÞ

1þPk�1
i¼1 li

>
2k

k
¼ 2: (6)

Case k-2. Otherwise, if lk < 1, the next request rkþ1 ¼
ðs2;P li þ ktÞ is made. Then the competitive ratio is

CðAÞ
CðOPT Þ �

kþ 1þPk
i¼1 li þOðdÞ

1þPk
i¼1 li

>
2kþ 1þOðdÞ

kþ 1

> 2� 1=ðkþ 1Þ:
(7)

Note that if we assume that the data item is always
cached on the cheapest server s1, the “¼” relationship
is held, otherwise, the “> ” is obtained. By now, we
have established a lower bound of 2� oð1Þ for the
competitive ratio of this problem, which implies there
is no deterministic algorithm that can do better than
this ratio. tu
This theorem demonstrates that the competitive ratio of

the proposed algorithm is fairly tight, compared to its lower
bound. As with the off-line pro-caching case, the designed
online re-active algorithm can be also applied to the multi-
ple data items, each being scheduled independently.

5.3 An Efficient Implementation

The implementation of the algorithm is straightforward by
following its description in Section 5.1 where a counter
array E½m� is maintained to record the copy expiration
information for each server in the network. Specifically, for
each incoming request, all its serving copy information in
E½m� can be manipulated within time Oð1Þ. As such, if the
index of one of the alive copies is maintained in a pointer
for efficient checking, then, the time complexity of the algo-
rithm incurred by one request is also a constant, which is
highly efficient.

However, this complexity analysis is somewhat idealized
as we lack the notion of the amortized overhead of

dropping time-out copies for each request. Fortunately, the
copy-timeout event processing can be implemented as a
background daemon running in parallel with the request
event processing. As such, it does not hurt the time effi-
ciency of request services.

6 HYBRID CACHING ALGORITHM

Although both of the algorithms presented in previous sec-
tions are efficient, they have demerits of their own. In partic-
ular, the pro-caching algorithm is optimal in terms of cost
reduction, but it relies on pre-defined request sequence,
which is not always feasible in practice. In reverse, the re-
caching algorithm, though not requiring the availability of
pre-defined sequence, lacks a global view of the requests,
rendering it sub-optimal for cost reduction. As such, to
have the complementary advantages of both algorithms, we
deliberately refactor them to combine as a single hybrid
caching algorithm, called Hybrid Caching (hy-caching) algo-
rithm as shown in Algorithm 2.

Algorithm 2.Hybrid Algorithm (HyCaching)

1: run the pro-caching algorithm on R and record the pro-
caching schedule S�;

2: Initialize: E½j�  0, 1 � j � m;
3: for (each new request ri arrives sj at ti) do
4: if ðri 2 RÞ then
5: serve ri either by the copy created by S� or by a caching

from sj, whose copy is maintained by re-caching in
extension Dtj, whichever is cheaper;

6: update E½j� by the caching schedule on sj based on S�;
7: end
8: if ðri 2 R0 n RÞ then
9: if (ri falls on a caching interval of S�) then
10: serve ri immediately by caching at cost 0;
11: end
12: else
13: if ðE½j� ¼ 0Þ then
14: serve ri by a transfer from S�, who has an alive

copy;
15: E½j�  ti þ Dtj;
16: end
17: else
18: serve ri by the copy on sj or by a transfer from S�,

whichever is cheaper;
19: E½j�  ti þ Dtj;
20: end
21: end
22: end
23: end
24: if (a copy expires on sj at t) then
25: drop the local copy;
26: E½j�  0;
27: end

Suppose the data item is located at s1 (the cheapest one),
for a predicted sequence R and a true online sequence R0,
the algorithm is roughly composed of two phases. In the
first phase we conduct a pro-caching schedule in which the
pro-caching algorithm is run on R, then we record the pro-
caching schedule S�.

WANG ETAL.: COST-DRIVEN DATA CACHING IN EDGE-BASED CONTENT DELIVERY NETWORKS 1393

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



In the second phase, we run the re-caching algorithm in
which as before we use a counter array of E½m�, initialized
by zero, to maintain the copy expiration information of each
server, 1 � j � m (Line 2).

When a new request ri arrives s
j at ti (create copies), we

first check if ri has been predicted, if so, we serve ri either
by the copy pre-determined by pro-caching S� or by a cach-
ing from sj, whose copy is maintained by re-caching in
extension Dtj, whichever is cheaper, then update E½j� based
on S� (Line 4-7). Otherwise, if it is a true request, but not
predicted (Line 8), then we see if ri can be served by S�, if
so, ri can immediately be served by caching for free (Line

9-11). Otherwise, if there is no copy cached on sj, then ri
will be served by a transfer from S�, who has an alive copy,
and update E½j� (Line 13-16), or else if there is a copy,
then ri is served by the copy on sj or by a transfer from
S�, whichever is cheaper, and then E½j� is updated (Line

17-20).
When a copy expires on sj at t (drop copies), we can sim-

ply drop the local copy and reset E½j� (Line 24-27).
Remarks. Essentially, the algorithm is designed by

improving the idea of the re-caching algorithm with the
aids of pro-caching schedules on predicted sequence. As
such, it allows the combined algorithms to mutually opti-
mize each other in an online fashion with results being
highly relied on the accuracy of the prediction. Specifically,
when the prediction is 100% accurate, the incoming requests
are severed at most CðS�Þ. Otherwise, extra costs for the
requests in R0 n R need to be added while the counted costs
for the requests in R nR0 are wasted. Given this complica-
tion, the competitive ratio of the hy-caching algorithm is
hard to analyze in general. We will study this issue
experimentally.

An illustrative example of the hy-caching algorithm is
shown in Fig. 8 where a predicted sequence of requests is
R ¼ fv0:5; v0:8; v2:6; v4g and the real sequence is R0 ¼
fv0:5; v1:1; v1:2; v2:1; v2:6; v3:2; v3:8; v4g. Then, according to the
algorithm, the requests in R, both correctly (block dots) and
incorrectly predicted (white dots), are satisfied by the opti-
mal pro-caching schedule (blue lines) while the real
requests in R0 n R ¼ fv1:1; v1:2; v2:1; v3:2; v3:8g (red dots) are
satisfied by the re-caching schedule (red lines) as they are
missing in the prediction. Also, both algorithms are benefi-
cial to each other, say, it is not necessary for the re-caching
algorithm to maintain an alive copy in the course of service
as it can be provided by the pro-caching algorithm as shown
for the transfer from s2 to v3:8. Reversely, if a re-caching

schedule of a missed request (i.e., v3:8 with time extension
Dt3 ¼ 0:4) is cheaper than an optimal transfer schedule (i.e.,
the transfer from s2 to v4), then it can be replaced with a
new re-caching schedule (i.e., the caching from v3:8 to v4 at
s3) to further minimize the cost.

7 PERFORMANCE EVALUATION

In this section, we conduct a trace-based simulation study to
evaluate the proposed algorithms and show how they
behave in practice with different configurations. As in [25],
we did not take into account some properties and features
of the network platform in the simulation as these proper-
ties can be modeled into the service cost, which is the focus
of this research.

7.1 Experimental Setups

Our trace-based study is based on an open dataset to com-
pare the cost-efficiency between our algorithms and differ-
ent baselines with respect to different values of � and mi in
a simulated edge-based CDN, which is designed by follow-
ing the model described in Fig. 1.

Dataset. The trace data we used is the largest open inter-
national mobile network dataset collected using the MON-
ROE platform spanning across 6 countries, 27 mobile
network operators, and 120 measurement nodes [29]. Rea-
sonably, we selected the connection requests in the dataset
to mimic the accesses to a shared data item in edge-based
CDN, which includes ”request node id”, ”request time”,
and other relevant information whereby a request vector R
and a set of servers P can be extracted.

Baselines. The proposed algorithms for both online
(ReCaching) and off-line (ProCaching) cases as well as their
combination HyCaching are efficiently implemented and
compared with some often-used baseline algorithms to
show their respective cost-efficiencies.

1) Greedy: An offline greedy algorithm, which is to start
with the last request on each server and finds the
one with the lowest service cost as the solution to the
next request [30].

2) Min-Cost Always Online (MCAO): An intuitive online
algorithm, which is to keep an active cached copy all
the time on the minimal-cost server to serve all the
requests on other servers by transferring.

3) AC3: An extension of 3-competitive online algorithm
in [24] that can work under the semi-homo model.

4) Online Greedy (OGreedy): An online greedy algo-
rithm, which is designed to keep only one cached
copy across all the servers. The locally cached copy
is deleted immediately after it is transferred to a
remote server where the next request is made.

Parameters. The simulator is configured by several
parameters, including the size of the network (the number
of servers), the caching and transfer cost (� and
mj; 1 � j � m), and other available resources. It also accepts
as an input a sequence of request demands that are made
for a shared data item. In our studies, we assume the
sequence is either presumably known in advance or gener-
ated in an online fashion, and each request is characterized
by 2-element tuple < s; t > as described in Section 3.

Fig. 8. An example of the hy-caching algorithm to illustrate a caching
schedule for a sequence of 9 requests, where the black dots are cor-
rectly predicted requests, the white dots are not correctly predicted, and
the red dots are the requests missed in the prediction. The blue lines
show the pro-caching schedule for severing the predicted requests and
the red lines indicate how the missing predicted requests are severed by
the online re-caching schedule. Note that in this example, Dt1 ¼
1:0;Dt2 ¼ 0:8;Dt3 ¼ 0:4 and Dt4 ¼ 0:2.

1394 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 3, MARCH 2023

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



We took the billing policy of Google Cloud Platform (GCP)3

as a reference to model the cache cost of servers. For
instance, ”n1-standard-8” costs 61¢ per hour (i.e., 0.16¢
per second) [31]. Therefore, we made uniform distribution
as the value of per second cost m, ranging from U ½0:1; 0:1�
(homo cost model) to U ½0:4; 0:8� (semi-homo cost model).
Based on Google Cloud CDN pricing (5� 20 ¢ per GB), we
further set the value of � in [5, 35] as this interval is expected
to cover a range of practical cases with respect to the given
ms. Meanwhile, to fully study the cost-efficiency of the algo-
rithms, a thousand of requests and tens of their correspond-
ing servers are randomly selected from the dataset as the
configuration for the experiments. Moreover, to reach our
goal, we defined a performance ratio (the lower, the better)

r ¼ CðAÞ
CðProCachingÞ ; (8)

to measure the proprieties of the algorithms in terms of rela-
tive cost-efficiency and scalability with respect to request
workloads, here, CðXÞ denotes the sum of the cache and
transfer costs in the algorithm solution, A denotes all the
compared algorithms, and ProCaching represents the offline
optimal algorithm.

Notably, all experiments are conducted under Linux
Ubuntu 20.04 running on Intel(R) Core(TM) i9-10900K CPU
@ 3.70GHz with 64GB Memory and 20MB L2 Cache.

7.2 Evaluation Results

In this section, we present our numerical results of the
experiments. We first study the pro-caching and re-caching
algorithms with respect to different model parameters, and
then investigate the performance of their combination.

7.2.1 ProCaching and ReCaching

Impact of �&m. First, we studied the impact of �&m on the
costs of both proposed algorithms. We set up 5 different
groups of experiments, including 2 groups with homoge-
neous m and the other 3 groups with heterogeneous m, with
each group investigating how the costs of serving 1000
requests are changed for each uniform m with the increase
of � from 5 to 35.

From Fig. 9, we can observe as � grows up, the perfor-
mance ratios of the compared online algorithms are

increasing accordingly while the off-line Greedy exhibits the
best performance in a relative stable fashion as in this case,
the produced off-line schedule remains close to the results
of ProCaching.

To measure their relative performance, we also com-
pared ReCaching and AC3 as shown in the figure where
ReCaching is consistently better than AC3 for both homo and
semi-homo cost models. These results demonstrate the
advantages of ReCaching, it can not only exploit the hetero-
geneity of the caching cost model to reduce the overall ser-
vice cost but also overcome the inefficiency of AC3 in
homogeneous cases as the competitive analysis illustrates.
Although the worst performances are guaranteed given
their online nature, the actual performance of both algo-
rithms ReCaching and AC3 are not that impressive in our
experiments, compared toMCAO and OGreedy.

This is because both MCAO and OGreedy maintain only
one copy in the network. As such, when � is relatively
small, a large number of transfers would result in better per-
formance than ReCaching, which heavily relies on caching
to serve more requests than both MCAO or OGreedy. Thus,
ReCaching is inferred to have more benefits when the trans-
fer cost is increased.

We validate this inference by increasing � in the last
experiment. As shown in Fig. 9, the performance of ReCach-
ing becomes stable within our bound as � increases, which
is different from OGreedy and MCAO, both exhibit
unboundedly lousy performance. This is because high
transfer cost will suppress data movements in the network,
which in turn results in many caching operations in favor of
the ReCaching algorithm. On the other hand, due to the sin-
gle-copy nature, both OGreedy and MCAO have to perform
a transfer for each incoming request if it is not made at the
copy-cached server.

To further validate our explanation, we fully investigate
how the cost is composed. To this end, we broke down the
total cost for each compared algorithm in terms of caching
and transfer when � is increased from 100 to 500 with
respect to ms in different uniform intervals. As shown in
Fig. 10, the caching cost is barely changed for both MCAO
and OGreedy while increasing in ReCaching and AC3.
This observation confirms our conclusion that both
ReCaching and AC3 can effectively take advantage of the
caching operations to reduce the overall costs. Therefore,
the ReCaching algorithm is a stable and theoretically
bounded algorithm.

Fig. 9. How the costs of baselines are changed with respect to different � where x-axis and y-axis are � and performance ratio, respectively. The first
and the fourth sub-figures are results for homo cost model, and others are for semi-homo cost model. The number of requests is 1000.

3. https://cloud.google.com/

WANG ETAL.: COST-DRIVEN DATA CACHING IN EDGE-BASED CONTENT DELIVERY NETWORKS 1395

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 

https://cloud.google.com/


Scalability. To study the scalability of ReCaching and AC3
with respect to request workloads, we gradually increase
the number of requests from 100 to 1000 and observe how
their performance ratios are changed with the number of
involved servers being increased from 20 to 40. To this end,
we conducted 5 groups of experiments, each setting the val-
ues of � as f10; 15; 20; 25; 30g.

The numerical results on comparison of different groups
are described in Fig. 11 where each box represents the statis-
tics across the five �-values for a fixed-sized sequence of
requests. From the figure, in general the performance ratios
of both algorithms initially increase and gradually become
stable, and in particular ReCaching is consistently better
than AC3 with a trend of enlarging the performance gaps as
the size of request samples increases, which is aligned with
our previous results. We can attribute these phenomenon to
the proprieties of the compared algorithms. When there is
only one copy left, ReCaching has one more � caching than

AC3, some requests can be served by leveraging the extra
caching in ReCaching, while in AC3 they need to be served
via transferring. Therefore, when requests becomes inten-
sive, more of them are likely served by the extra caching. As
such, ReCaching is expected to perform better than AC3,
which means as the request workload increases, ReCaching
is more scalable than AC3.

7.2.2 HyCaching

In this section, we evaluated the performance of HyCaching
that combines both ProCaching and ReCaching. We first com-
pared HyCaching with ReCaching to see how effectively the
combination improves over ReCaching, and then disclosed
how its component algorithms—ProCaching and ReCach-
ing—behave under the hood. To this end, we deliberately
constructed a set of predicted request sequences, each with
different accuracies, by randomly replacing a number of
requests in an actual sequence.

Performance Comparison. We compared the perf. ratio (the
lower, the better) between HyCaching and ReCaching with
respect to different �s when transfer cost � is varied from 5
to 35. As shown in Fig. 12, the perf. ratio of HyCaching is
increased with the growth of �, which is aligned with that
of ReCaching. This observation is not difficult to understand
as the overall costs for both algorithms are effected by the
transfer cost in proportion when ms are fixed. Another inter-
esting observation, which is beyond our expectation, is that
HyCaching is consistently better than ReCaching, even the
accuracy is low. We can attribute this phenomenon to the
mutual optimization between the two component algo-
rithms as we remarked in Section 6.

On the other hand, with the increase of prediction accu-
racy, the perf. ratio of ReCaching is maintained as a constant
for each � since it works online and has nothing to do with
the prediction accuracy while for HyCaching, its perf. ratio
decreases in approximately a linear fashion to approach the
off-line optimal solution when the accuracy is varied from 0
to 1, progressively enlarging the performance gap to
ReCaching. This is not difficult to understand as when the

Fig. 10. The comparisons of cost breakdowns (caching and tranfer)
between different compared algorithms when � is increased from 50 to
500.

Fig. 11. How the costs of baselines are changed with respect to different
sample sizes where x-axis and y-axis represent sample size and perfor-
mance ratio, respectively (m ¼ ½0:4; 0:5�).

Fig. 12. How the performance ratios of HyCaching are relatively changed
with respect to different prediction accuracies where x-axis and y-axis
are accuracy ratio and performance ratio, respectively. The number of
requests is 1000 and m = [0.3,0.4].

1396 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 3, MARCH 2023

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



accuracy increases, most of the requests are correctly pre-
dicted and thus satisfied in optimal ways.

Mutual Optimization. ProCaching and ReCaching are not
orthogonally combined in Hybird. Actually they can benefit
each other as shown in Fig. 8. In this experiment, we evalu-
ated these mutual benefits. To this end, we denoted the
number of times that ReCaching is exploited to reduce the
cost of ProCaching as ReForPro, and as ProForRe in reverse.
We compared them in Fig. 13.

As shown in the figure, the mutual optimizations for
both ReForPro and ProForRe are inversely proportional to
the prediction accuracy. This is not difficult to understand
as with the increase of accuracy, the number of missed pre-
dicted request is reduced, so are the opportunities for
mutual optimization. From the figure, another interesting
observation is that ProForRe is much larger than ReForPro
across all the examined cases, especially when the accuracy
is lower. These results can be expected since the caching
schedule created by ProCahing can cover most of the
requests inR0 n R, especially when the accuracy is relatively
low. However, in contrast, the opportunities of ReCaching to
benefit ProCaching is relatively small, with only a period of
Dt copy extension for each request served by ReCaching.

Cost Breakdown. To deeply understand how ReCaching
and ProCaching fight against each other inside HyCaching,
we broke down the cost of HyCaching based on these two
algorithms and investigated their mutual effects as shown
in Fig. 14. From the figure, one can see the cost ratios of Pro-
Caching are becoming larger and larger as the prediction
accuracy increases, which means HyCaching becomes more
“optimal” with reduced ReCaching effects. In contrast, by
following the same arguments in the last paragraph, one
can observe that the cost ratio of ReCaching is also increasing

accordingly with the increase of � as more transfers are per-
formed by ReCaching than by ProCaching.

8 RELATED WORK

Given its inherent merits, edge-based CDN has been being
widely deployed to realize fast, always-on access to data serv-
ices from any device across the globe. As such, the studies on
cost-effective edge CDNs, especially for the data caching
problem in its edge network, are arousing great interest in
both academia and industry [3], [6], [12], [13], [15], [32], [33].

Ding et al. [6] proposed an edge content delivery and
update (ECDU) framework whereby edge content delivery
and edge content update algorithms were developed with
an aim to reduce the pressure on the core network while
saving bandwidth resources to make up for the shortcom-
ings of existing CDN-based works. Although the aim is con-
sistent with ours, the algorithms they proposed are not
competitive and the worst cases could not be bounded. Xia
et al. [32], [33] conducted a further study on this problem in
the edge from an app vendor’s perspective, and came up
with both online and off-line algorithms for cost-effective
data distribution to overcome the above shortcomings.
However, these algorithms only take into account the trans-
fer cost in the edge data distribution, missing the consider-
ation on caching cost, which is the key in our study.

The similar yet different problems for data caching were
also recently conducted in the context of CDN. Tan et al.
[34] proposed a pair of Oðlog kÞ-competitive randomized
and deterministic algorithms to redirect caching requests
for minimizing the overall cost via relay and bypass opera-
tions, where k is the total number of slots in all caches.
Clearly, these operations are orthogonal to our case.

Fig. 13. Mutual optimization between ProCaching and ReCacing in HyCaching.The number of requests is 1000 and m = [0.3,0.4].

Fig. 14. Performance breakdowns of HyCaching under different �s. The number of requests is 1000 and m ¼ ½0:3; 0:4�.

WANG ETAL.: COST-DRIVEN DATA CACHING IN EDGE-BASED CONTENT DELIVERY NETWORKS 1397

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



In addition to the edge and CDN, data caching problem in
its abstract form has also been intensively studied in other
contexts [27], [35], [36]. Arguably, the problem in the current
form was first proposed and studied by B. Veeravalli in con-
text of network services [27] as early as 2003, where a homo-
geneous cost model is assumed to obtain an Oðm2nlogmÞ
time algorithm for optimum caching schedule. Wang et al.
[25] re-investigated this problem in the context of cloud and
developed an improved solution with time complexity of
Oðm2nÞ and also with some abilities to handle certain var-
iants of this problem such as those having multiple data
items. However, due to the intrinsic hardness of this prob-
lem, only approximation algorithms for its off-line form are
studied, sporadically with some considerations on its online
cases [24]. A variant of this problem is also investigated by
Mansouri et al. [37] in the context of cloud, who exploited the
storage classes with different prices across CSPs to serve
time-varying workloads. To this end, they proposed both
optimal off-line and competitive online algorithms for data
replication andmigration in cloud data centers.

As opposed to the above-mentioned studies in the con-
text of cloud, which focus more or less on the off-line situa-
tions, Gharaibeh et al. [38] proposed an Oð1Þ-competitive
online caching algorithm for this problem in the context of
Content Centric Networking (CNN). With this result as a
basis, they further delved into the situation when online col-
laborative caching can be exploited to bring the content item
closer to its users with minimum rental cost in a multicell-
coordinated system [39]. To this end, they presented an
OðlogmÞ-competitive online algorithm (m: network size.
Similarly, Bikenkowski et al. [40] conducted a competitive
analysis to design a randomized and a deterministic online
algorithms, but in the context of virtual network, that also
achieve a competitive ratio of OðlogmÞ for finding a good
trade-off between the benefit and cost of a migratable data
service.

The major difference between our work and these studies
is that the existing work is either short of the notion of the
function to automatically maintain the number of item cop-
ies for optimal costs or restricted to the cost model different
from ours. However, this function plays an essential role in
our cost-driven caching problem. Moreover, none of sur-
veyed algorithms combine the merits of both online and off-
line algorithms if they have them.

The problem proposed in this paper can be viewed as a
follow-up research of the caching problem presented in [24]
where an efficient and optimal off-line algorithm is obtained
by leveraging dynamic programming techniques and an 3-
competitive online is designed based on the concept of antic-
ipatory caching. Our paper extends these results by relaxing
the cost model to a semi-homo model whereby a fast and
optimal off-line algorithm and an 2-competitive online algo-
rithm are designed with a provable 2� oð1Þ lower bound of
the competitive ratio being established. On the other hand,
to combine the merits of both algorithms, a hybrid caching
algorithm is also put forward.

9 CONCLUSION

In this paper, we studied a data caching problem in edge-
based CDNs to facilitate the content delivery to serve a

sequence of requests, off-line and online, with minimum
costs as a goal based on a semi-homo cost model. To this
end, we first designed an OðmnÞ time and space optimal
proactive off-line algorithm, called pro-caching, by reducing
the problem to a simple shortest path problem in a directed
weighted network graph, and then extended the idea of
anticipatory caching to develop an 2-competitive reactive
online algorithm, called re-caching, for this problem and
showed its tightness by proving that no deterministic online
algorithm can do better than 2� oð1Þ in its worst case.
Finally, to combine the advantages of both algorithms, we
also presented a hybrid algorithm, called hy-caching, to fully
utilize the power and benefits of edge-based CDNs while
reducing their service costs. Our results improve the previ-
ous results not only in the cost model being used but also in
the time complexity, competitive ratio, and the quality of
the solutions. We provably achieve these results with our
deep insights into the problem and the careful analysis,
together with an empirical evaluation.

Notably, in this research, we only focus on how to sched-
ule the caching of a single data item without concerning the
cache capacity as our caching policy is cost-driven, rather
than capacity-driven for multiple data items as in the tradi-
tional case. As a result, we are concerned mainly with how
to minimize the caching cost to serve the request sequence,
instead of reducing the miss ratio. With this consideration,
the proposed algorithms, online and off-line, are relatively
easy to extend to the case for multiple data items by simply
summing up the cost of each item in a linear fashion to get
the overall cost for multiple data items in both cases. Of
course, when considering capacity as a constrain, cost-
driven data caching for multiple items is highly desired [41].
However, to the best of our knowledge, the problem is
believed to be NP-hard for the off-line case, while for the
online case, the design of an online algorithm with a good
competitive ratio is still in our future work.

ACKNOWLEDGMENTS

The authors would like to thank all reviewers for their
insightful comments and suggestions. This work was sup-
ported by Key-Area Research and Development Program of
Guangdong Province under Grant 2020B010164002. Portion
of this paper [1] has been published in IEEE International
Conference on Computer Communications 10-13 May 2021.

REFERENCES

[1] Y. Wang et al., “Cost-driven data caching in the cloud: An algo-
rithmic approach,” in Proc. IEEE INFOCOM IEEE Conf. Comput.
Commun., 2021, pp. 244–252.

[2] G. Huang et al., “Software-defined infrastructure for decentralized
data lifecycle governance: Principled design and open challenges,” in
Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst., 2019, pp. 1674–1683.

[3] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video
caching at network edge: A multi-agent deep reinforcement
learning approach,” in Proc. IEEE INFOCOM, 2020, pp. 2499–
2508.

[4] F. Z. Jiang, K. Thilakarathna, S. Mrabet, M. A. Kaafar, and A. Sene-
viratne, “uStash: A novel mobile content delivery system for
improving user QoE in public transport,” IEEE Trans. Mobile Com-
put., vol. 18, no. 6, pp. 1447–1460, Jun. 2019.

[5] T. Taleb, P. A. Frangoudis, I. Benkacem, and A. Ksentini, “CDN
slicing over a multi-domain edge cloud,” IEEE Trans. Mobile Com-
put., vol. 19, no. 9, pp. 2010–2027, Sep. 2020.

1398 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 3, MARCH 2023

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



[6] C. Ding, A. Zhou, J. Huang, Y. Liu, and S. Wang, “ECDU: An edge
content delivery and update framework inmobile edge computing,”
EURASIP J.Wireless Commun. Netw., vol. 2019, pp. 1–9, 2019.

[7] R. Karasik, O. Simeone, and S. Shamai Shitz , “How much can
D2D communication reduce content delivery latency in fog net-
works with edge caching?,” IEEE Trans. Commun., vol. 68, no. 4,
pp. 2308–2323, Apr. 2020.

[8] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task off-
loading for mobile edge computing in dense networks,” in Proc.
IEEE INFOCOM, 2018, pp. 207–215.

[9] Z. Xu, L. Zhou, S. Chi-Kin Chau, W. Liang, Q. Xia, and P. Zhou,
“Collaborate or separate? Distributed service caching in mobile
edge clouds,” in Proc. IEEE INFOCOM, 2020, pp. 2066–2075.

[10] T. Zhao, I. H. Hou, S. Wang, and K. Chan, “Red/LeD: An asymp-
totically optimal and scalable online algorithm for service caching
at the edge,” IEEE J. Sel. Areas Commun., vol. 36, no. 8, pp. 1857–
1870, Aug. 2018.

[11] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen,
“Cooperative edge caching in user-centric clustered mobile
networks,” IEEE Trans. Mobile Comput., vol. 17, no. 8, pp. 1791–
1805, Aug. 2018.

[12] Y. Jiang, Y. Hu, M. Bennis, F. C. Zheng, and X. You, “A mean field
game-based distributed edge caching in fog radio access
networks,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1567–1580,
Mar. 2020.

[13] Y. Qian, R. Wang, J. Wu, B. Tan, and H. Ren, “Reinforcement
learning-based optimal computing and caching in mobile edge
network,” IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2343–
2355, Oct. 2020.

[14] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service
caching and workload scheduling in mobile edge computing,” in
Proc. IEEE INFOCOM, 2020, pp. 2076–2085.

[15] X. Wang, C. Wang, X. Li, V. C. Leung, and T. Taleb, “Federated
deep reinforcement learning for internet of things with decentral-
ized cooperative edge caching,” IEEE Internet Things J., vol. 7,
no. 10, pp. 9441–9455, Oct. 2020.

[16] Y. Li, K.-H. Kim, C. Vlachou, and J. Xie, “Bridging the data charg-
ing gap in the cellular edge,” in Proc. ACM Special Interest Group
Data Commun., 2019, pp. 15–28.

[17] D. T. Nguyen, L. B. Le, and V. Bhargava, “Price-based resource
allocation for edge computing: A market equilibrium approach,”
IEEE Transactions on Cloud Computing, vol. 9, no. 1, pp. 302–317,
Jan.–Mar. 2021.

[18] A. Sadeghi, F. Sheikholeslami, A. G. Marques, and G. B. Gianna-
kis, “Reinforcement learning for adaptive caching with dynamic
storage pricing,” IEEE J. Sel. Areas Commun., vol. 37, no. 10,
pp. 2267–2281, Oct. 2019.

[19] H. Wu et al., “Delay-minimized edge caching in heterogeneous
vehicular networks: A matching-based approach,” IEEE Trans.
Wireless Commun., vol. 19, no. 10, pp. 6409–6424, Oct. 2020.

[20] AliCloud. Accessed: Jun. 13, 2021. [Online]. Available: https://
www.alibabacloud.com/product/linkiotedge

[21] A. Mazrekaj, I. Shabani, and B. Sejdiu, “Pricing schemes in cloud
computing: An overview,” Int. J. Adv. Comput. Sci. Appl., vol. 7,
pp. 80–86, 2016.

[22] P. R. Lei, T. J. Shen, W. C. Peng, and I. J. Su, “Exploring spatial-
temporal trajectory model for location prediction,” in Proc. IEEE
12th Int. Conf. Mobile Data Manage., Jun. 2011, pp. 58–67.

[23] C. P. Lau, A. Alabbasi, and B. Shihada, “An efficient content deliv-
ery system for 5G CRAN employing realistic human mobility,”
IEEE Trans. Mobile Comput., vol. 18, no. 4, pp. 742–756, Apr. 2019.

[24] Y. Wang, S. He, X. Fan, C. Xu, J. Culberson, and J. Horton, “Data
caching in next generation mobile cloud services, online vs. off-
line,” in Proc. 46th Int. Conf. Parallel Process., Bristol, U.K., Aug.
2017, pp. 412–421.

[25] Y. Wang, B. Veeravalli, and C.-K. Tham, “On data staging algo-
rithms for shared data accesses in clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 4, pp. 825–838, Apr.
2013.

[26] M. Charikar, D. Halperin, and R. Motwani, “The dynamic servers
problem,” in Proc. Ninth Annu. ACM-SIAM Symp. Discrete Algo-
rithms, Philadelphia, PA, USA, 1998, pp. 410–419.

[27] B. Veeravalli, “Network caching strategies for a shared data distri-
bution for a predefined service demand sequence,” IEEE Trans.
Knowl. Data Eng., vol. 15, no. 6, pp. 1487–1497, Nov./Dec. 2003.

[28] W. Shi and C. Su, “The rectilinear Steiner arborescence problem is
np-complete,” in Proc. 11th Annu. ACM-SIAM Symp. Discrete Algo-
rithms, Philadelphia, PA, USA, 2000, pp. 780–787.

[29] A. S. Khatouni et al., “An open dataset of operational mobile
networks,” in Proc. 18th ACM Symp. Mobility Manage. Wirel. Access,
Dec. 2019, pp. 83–90, 2020.

[30] Y. Wang, B. Veeravalli, and C. K. Tham, “On data staging algo-
rithms for shared data accesses in clouds,” IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 4, pp. 825–838, Apr. 2013.

[31] L. N. Hyseni and A. Ibrahimi, “Comparison of the cloud comput-
ing platforms provided by amazon and Google,” in Proc. Comput.
Conf., 2017, pp. 236–243.

[32] X. Xia, F. Chen, Q. He, J. C. Grundy, M. Abdelrazek, and H. Jin,
“Cost-effective app data distribution in edge computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 31–44, Jan. 2021.

[33] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Trans. on Parallel and Distributed Syst., vol. 32, no. 2, pp. 281–294,
Feb. 2021.

[34] H. Tan, S. H. Jiang, Z. Han, L. Liu, K. Han, and Q. Zhao,
“CAMUL: Online caching on multiple caches with relaying and
bypassing,” in Proc. IEEE INFOCOM, 2019, pp. 244–252.

[35] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing,
caching and communications,” IEEE Access, vol. 5, pp. 6757–6779,
Mar. 2017.

[36] C. Li, Y. Wang, H. Tang, Y. Zhang, Y. Xin, and Y. Luo, “Flexible
replica placement for enhancing the availability in edge comput-
ing environment,” Comput. Commun., vol. 146, pp. 1–14, 2019.

[37] Y. Mansouri, A. N. Toosi, and R. Buyya, “Cost optimization for
dynamic replication and migration of data in cloud data centers,”
IEEE Transactions on Cloud Computing, vol. 7, no. 3, pp. 705–718,
Jul.–Sep. 2019.

[38] A. Gharaibeh, A. Khreishah, and I. Khalil, “An o(1)-competitive
online caching algorithm for content centric networking,” in Proc.
IEEE INFOCOM 35th Annu. IEEE Int. Conf. Comput. Commun.,
2016, pp. 1–9.

[39] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A provably
efficient online collaborative caching algorithm for multicell-
coordinated systems,” IEEE Trans. Mobile Comput., vol. 15, no. 8,
pp. 1863–1876, Aug. 2016.

[40] M. Bienkowski, A. Feldmann, J. Grassler, G. Schaffrath, and S.
Schmid, “The wide-area virtual service migration problem: A
competitive analysis approach,” IEEE/ACM Trans. Netw., vol. 22,
no. 1, pp. 165–178, Feb. 2014.

[41] D. Huang, X. Fan, Y. Wang, S. He, and C. Xu, “Dp_greedy: A two-
phase caching algorithm for mobile cloud services,” in Proc. IEEE
Int. Conf. Cluster Comput., 2019, pp. 1–10.

Yang Wang received the BSc degree in applied
mathematics from the Ocean University of China
in 1989, the MSc degree in computer science
from Carlton University in 2001, and the PhD
degree in computer science from the University
of Alberta, Canada, in 2008. He is currently with
the Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, as a full professor
and with Xiamen University, China, as an adjunct
professor. From 2009 to 2011 and from 2014 to
2015, he was an Alberta Industry R&D Associate

and a Canadian Fulbright Scholar. His research interests include service
and cloud computing, programming language implementation, and soft-
ware engineering.

Hao Dai received the MSc degree in communica-
tion and electronic technology from the Wuhan
University of Technology in 2017. He is currently
working toward the PhD degree with the Shenz-
hen Institutes of Advanced Technology, Chinese
Academy of Sciences. His research interests
include cloud computing, big data processing,
and mobile edge computing systems.

WANG ETAL.: COST-DRIVEN DATA CACHING IN EDGE-BASED CONTENT DELIVERY NETWORKS 1399

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 

https://www.alibabacloud.com/product/linkiotedge
https://www.alibabacloud.com/product/linkiotedge


Xinxin Han received the bachelor’s and master’s
degrees in mathematics and applied mathemat-
ics. She is currently working toward the PhD
degree with the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences. Her
research interests include scheduling and algo-
rithm optimization and data caching and offload-
ing problems in edge and cloud computing.

Pengfei Wang received the BSc degree in air-
craft design and engineering from BeiHang Uni-
versity in 2018. He is currently working toward
the MSc degree with the Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sci-
ences. His research interests include cloud com-
puting, distributed system, and online dispatching
algorithm.

Yong Zhang received the PhD with the Depart-
ment of Computer Science and Engineering,
Fudan University, in 2007. He is currently a pro-
fessor with SIAT, CAS, honorary professor with
the University of Hong Kong. Before joining SIAT,
he was postdoctoral fellow and senior researcher
with TU-Berlin and HKU. He has authored more
than 100 papers in refereed journals and confer-
ences. His research interests include design and
analysis of algorithms, combinatorial optimiza-
tion, and wireless networks.

Chengzhong Xu (Fellow, IEEE) received BSc
and MSc degrees in computer science and engi-
neering from Nanjing University in 1986 and
1989, respectively, and the PhD degree in com-
puter science and engineering from the University
of Hong Kong in 1993. He is currently a chair pro-
fessor of computer science and the dean of the
Faculty of Science and Technology, University of
Macau, China. He has authored or coauthored
more than 400 papers in journals and conferen-
ces. His research interests include cloud and dis-

tributed computing, systems support for AI, smart city, and autonomous
driving. He is on a number of journal editorial boards and the chair of
IEEE TCDP from 2015 to 2020. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1400 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 3, MARCH 2023

Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on October 11,2023 at 10:34:45 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


