
Neighborhood-oriented Decentralized Learning
Communication in Multi-Agent System⋆

Hao Dai1,2[0000−0003−1018−2162], Jiashu Wu1,2[0000−0002−1347−1974], André
Brinkmann3[0000−0003−3083−2775], and Yang Wang1,2[0000−0001−9438−6060](B)

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Science
2 University of Chinese Academy of Science

3 Zentrum für Datenverarbeitung, Johannes Gutenberg-Universität Mainz
yang.wang1@siat.ac.cn

Abstract. Partial observations are one of the critical obstacles in multi-
agent systems (MAS). The Centralized Training Decentralized Execution
(CTDE) paradigm has been widely studied to integrate global observa-
tions into the training process. However, the traditional CTDE paradigm
suffers from local observations during the execution phase, and numer-
ous efforts have been made to study the communication efficiency among
agents to promote cognitive consistency and better cooperation. Further-
more, training still operates in a centralized manner, requiring agents
to communicate with each other in a broadcast fashion. As a conse-
quence, this centralized broadcast-based training process is not feasible
when being applied to more complex scenarios. To address this issue, in
this paper we propose a neighborhood-based learning approach to en-
able agents to perform training and execution in a decentralized manner
based on information received from their neighboring nodes. In particu-
lar, we design a novel encoder network and propose a two-stage decision
model to improve the performance of this decentralized training. To eval-
uate the method, we further implement a prototype and perform a series
of simulation-based experiments to demonstrate the effectiveness of our
method in multi-agent cooperation compared to selected existing multi-
agent methods to achieve the best rewards and drastically reduce data
transmission during training.

Keywords: Multi-Agent System, Deep Reinforcement Learning, Learn-
ing Communication

⋆ Supported by the Key-Area Research and Development Program of Guang-
dong Province (2021B010140005), Shenzhen Science and Technology Plan Project
(Shenzhen-Hong Kong-Macau Category C, No. SGDX20220530111001003), and
the Joint Research Project of Suntang-SIAT Research Lab for Big Data and
AI, the National Key R&D Program of China (No. 2021YFB3300200), National
Natural Science Foundation of China (No. 62072451, 92267105), Industrial ap-
plication research project of Shenzhen for undertaking the national key project
of China (No.CJGJZD20210408091600002 ), Chinese Academy of Sciences Pres-
ident’s International Fellowship Initiative (No. 2023DT0003), Guangdong Spe-
cial Support Plan (No. 2021TQ06X990), Shenzhen Basic Research Program (No.
JCYJ20200109115418592, JCYJ20220818101610023).



2 H. Dai et al.

1 Introduction

Multi-agent reinforcement learning (MARL) has emerged as a cutting-edge arti-
ficial intelligence technology that has achieved significant success in massive chal-
lenging tasks [10, 17, 13]. However, although MARL shows excellent prospects in
solving optimization problems, it encounters many additional obstacles when
adapted to real-world tasks [20, 19, 8]. One of them is the well-known non-
stationary problem. The simultaneous action of multiple agents brings not only
the dimensional explosion of the observation space, but also the difficulty of
reaching consistency between actions and environment. Another is the partial
observation problem. A single agent has a limited perspective and can only ob-
serve the situation in its own neighborhood, which leads to a lack of overall
consideration in its decision-making. To overcome these technical hurdles, an
approach is to aggregate all observations for centralized model training. Mean-
while, in the execution phase, the trained model relies on local observations to
make decisions independently. Through optimization algorithms, such as value
decomposition and credit assignment, this paradigm, called Centralized Training
and Decentralized Execution (CTDE) [17, 13, 15], alleviates some of the difficul-
ties in model training convergence. However, CTDE still suffers from chaotic
decisions caused by partial observation at the execution stage.

Another intuitive idea comes from bionics, where animals use communica-
tion to negotiate and cooperate. Introducing communication into multi-agents
means that agents can share their perceptions of the environment and their in-
tentions to act, thus achieving unanimity. Agents typically encode their own
observations and send them to other agents for decision-making. Open problems
in learning communication include how to encode and decode messages, how to
select communication objects, and how to design communication mechanisms [7,
14, 21, 19, 2]. Recent research including CommNet [16], IC3Net [14], TarMAC [1],
and I2C [2] has significantly advanced the state of the art in these aspects and
demonstrated the benefits of communication in MARL. Although promising,
these methods all imply some form of centralization, such as broadcast com-
munication [16, 6, 1], or concentrating all observations to train the encoder [7,
2].

To address these issues, we draw inspiration from social psychology, which
finds that cognitive consistency within a neighborhood is important, and peo-
ple tend to cooperate with their neighbors [11]. We design a novel neighbor-
oriented learning communication approach, in which agents make decisions and
train models using their neighbors’ messages. In this paper, we make the follow-
ing contributions: (1) We design an encoder network according to the idea of
neighborhood cognitive consistency. By calculating the Kullback–Leibler (KL)
divergence of messages from different neighbors, the encoder network can repre-
sent the consensus information of the neighborhood. (2) We propose a pseudo-
pre-acting mechanism. This mechanism can send decision information along
with messages to support the neighbors’ decision-making and reduce the non-
stationarity of MAS. (3) We develop a new learning communication method



Neighborhood-oriented Decentralized Learning Communication 3

based on the actor-critic (AC) algorithm, Neighborhood-Oriented Actor-Critic
(NOAC), and construct experiments to validate our findings.

The organization of the paper is as follows: we discuss related works regarding
MARL in Section 2 and introduce some background knowledge in Section 3. We
illustrate the formulation and methodology in Section 4. Afterward, we present
the simulation studies to validate our findings in Section 5, followed by the
conclusion of the paper in the last section.

2 Related Work

An important challenge in MARL is how to characterize the interaction be-
tween agents, so numerous works propose that we can learn a joint value to
guide agents’ actions [10, 17, 13, 15, 5]. Based on this idea, researchers developed
a widely used paradigm, Centralized Training Decentralized Execution (CTDE).
In this paradigm, all agents share the information of joint value to mitigate non-
stationarity. Although this paradigm has significantly improved the applicability
of MARL, the lack of additional information in the execution phase still plagues
the robustness of the action policy. To address the problem of agents’ limited
perspective, exchanging observations among agents to gain an understanding
of the entire environment is an intuitive and advantageous idea. Many works
have shown that learning communication is a promising approach [3, 16, 14, 1, 6,
7, 2]. These methods mainly focus on how to combine communication and deep
reinforcement learning networks.

DIAL [3], a pioneer of learning communication, uses DQN to implement a
learnable communication, introducing backpropagation to communication net-
works for the first time. The shortcoming of DIAL is that it can only handle
discrete messages. Therefore, CommNet [16] employs a hidden layer to encode
observations as continuous messages. DIAL and CommNet exchange messages
between agents in a fully connected network, i.e. they communicate in a broad-
cast fashion. This mode of message delivery introduces redundant communica-
tion and massive inter-message interference. Lowe et al. [9] analyzed the urgency
of messages and proposed two indicators, positive signaling and positive listen-
ing, to measure the utility of messages. Based on the concern that messages
are not always useful for decision making, some works have tried to investigate
how to communicate efficiently. One type of method, represented by ATOC [6]
and IC3Net [14], introduced a gate mechanism to determine whether a message
needs to be sent. In contrast, other alternative approaches, such as SchedNet [7],
TarMAC [1], and I2C [2], adopted some weighting mechanisms to reduce com-
munication between agents.

However, all these methods inevitably share a common problem: global infor-
mation (including all observations and actions) is needed to compute TD-error
during training. This leads to scalability problems when dealing with large-scale
multi-agent systems. The dilemma stems from the fact that non-stationarity re-
quires global information to counteract it. To this end, we designed a learning
communication method that trains and executes depending on neighborhood in-



4 H. Dai et al.

formation. One of the main differences between previous work and ours is that
we no longer use global information to compute the TD-error. This setting is
more practical and allows for flexible parallelization of training.

3 Background

3.1 Dec-POMDP

Decentralized Partially Observable Markov Decision Process (Dec-POMDP), is
commonly used to characterize multi-agent systems where each agent can only
partially observe the environment and follows a hidden Markov decision process
for state transitions. A Dec-POMDP can be defined as a tuple:

D = ⟨N ,A,R,O⟩ (1)
here, N denotes the number of agents in total, A = a1 × ... × aN is the set of
joint action, R = {r1, ..., rN } is the reward set, O = {o1, ..., oN } is the set of
observations, which satisfies oi ∪ oj ⊈ oi or oj .

Our goal is to guide the agent to achieve the maximum cumulative reward
E[
∑+∞

t=0 γr⃗t], here γ is the discount factor. To this end, we define a set of policies
π⃗ = {π1(a1|o1), ..., πN (aN |oN )}, and the final objective is to learn the optimal
policy to maximize the cumulative reward.

J (θ) = Ea∼π(θ)[

+∞∑
t=0

γr⃗t] (2)

Remarkably, considering that we are mainly focusing on the cooperative agents,
there is typically only one global reward r, which is one of the main reasons why
the convergence of MARLs is challenging.

3.2 Actor-Critic

Actor-Critic is a typical reinforcement learning algorithm that combines the ad-
vantages of value-based and policy gradient methods. It consists of two networks:
the actor network and critic network. The critic network is used to estimate the
current status value V (o; θc), which is updated by calculating the current TD-
error:

L(θc) = γ ∗ V (o′; θc) + r − V (o; θc) (3)

Meanwhile, the actor network adopts the policy gradient method to perform
actions for agents. The idea of policy gradient is to give the larger action value
higher sampling probability. Therefore, combined with the advantage function
of the critic network, its updating method is as follows:

∇θaJ (θa) = ∇θa [ logθa πθa(a|o)L(θc)] (4)
It is worth noting that to avoid non-stationary problems in multi-agent train-

ing, it is typically assumed that the critic network is centralized, or that each
critic can obtain global information through communication or other means.
That is, o and a in the above formula are the set of observations and actions



Neighborhood-oriented Decentralized Learning Communication 5

of all agents, respectively. Although this type of method has shown good con-
vergence guarantees, the cost of aggregating all information is prohibitive in
large-scale multi-agent systems.

4 Methodology

To overcome the centralized dilemma of multi-agent training, we take inspira-
tion from [11]. In most cases, agents interact only with their neighbors, which
is also consistent with interaction in human society. Therefore, we design a
neighborhood-oriented method for multi-agent training in the subsequence sec-
tion.

4.1 Neighborhood Cognitive

We denote the set of neighbors of agent i as N(i), i.e., agent j ∈ N(i) is a neigh-
bor of agent i. According to [11], there is a so-called true hidden cognitive
variable C in each neighborhood, and all partial observations are the interplay
of these variables. This assumption is intuitive, we can imagine that multiple

Fig. 1. The partial observations are generated from the hidden cognitive variables.

neighbors observe a global state S and attain multiple hidden variables Ck, and
agent i observes Ck and get observation oi, as shown in Fig. 1. We can assume
that {Ck} has a strong representation of global state S, and the observation of
agent i can be derived as follows:

p(oi|S) =
∑
k

p(oi|Ck) (5)

Therefore, we can consider the aggregation of Ck as an intermediate represen-
tation of S. Although this hidden state does not change the situation that the
global reward cannot be decomposed to a single agent (or neighborhood), it
does mitigate some of the uncertainties through this transformation. As a conse-
quence, we design an encoder network, mi = M(oi), to encode the observation
of agent i and send it to its neighbors. We can rewrite the AC algorithm with
neighborhood communication as follows:

L(θci ) = γ ∗ Vj∈N(i)(m
′
i,m

′
j ; θ

c
i ) + r − Vj∈N(i)(mi,mj ; θ

c
i )

∇θa
i
J = ∇θa

i
[ logθa

i
πθa

i ;j∈N(i)(ai|mi,mj)L(θci )]
(6)

Note that the input to the AC algorithm becomes an encoded set of messages.
Neighborhood consistency assumes that all observations are based on the same
hidden variable Ck, which means that oi and oj are inherently correlated, so



6 H. Dai et al.

we can achieve consistency in cognition by minimizing the differences between
messages. Although the exact value of Ck is unknown, we can leverage KL-
divergence to measure the difference between messages. Therefore, we derive the
loss function of the encoder network as follows:

Le(θmi ) =
∑

j∈N(i)

DKL(P (mi; θ
m
i )∥P (mj)) (7)

This encoder network improves cognitive consistency in neighborhoods and sig-
nificantly reduces the amount of data transferred.

4.2 Pseudo Pre-Acting

Passing messages brings additional information to the actor network and affects
its decision-making by integrating neighborhood information. The neighborhood
messages change the receiver’s decision, and we use this differential to indicate
the impact of these messages. Using the causal inference method, we can define
indicators to show how an agent’s decision making is influenced by its neighbors.

Ii = DKL,j∈N(i)∪i(π(a|oi,mj)∥π(a|oi)) (8)
Unfortunately, this influence shows the effect of neighborhood information on

decision-making and does not indicate whether the changes increase or decrease
the reward. Therefore, we consider the role of messages from a game theory
perspective.

Multi-agent systems can usually be formalized as a game in which each agent
takes its own action and receives a payoff. An important concept in game theory
is the Nash equilibrium (NE), which means that the system is in a sort of steady
state. Although the NE does not always maximize the social welfare (reward),
it is robust enough and usually better than non-stationary solutions. Moreover,
the maximum reward must also be an element of the NE set. Therefore, if we
let multiple agents cooperatively reach a NE, we can change the problem of
maximizing rewards to finding the optimal point among multiple NE states.

There are many ways to solve Nash equilibrium, and the most effective is
to compute the best response. Let Ai and u be the action space and the utility
function of agent i, respectively, then the best response can be computed as
follows:

a∗ = argmaxai∈Ai
u(ai, a⃗−i) (9)

here, a⃗−i represents the action set of all agents except i. One of the definitions of
Nash equilibrium is that all agents are in the best response state, which means
that no agent can unilaterally change its action to get better rewards. That is, if
agents know the actions of other agents, they can adopt strategies to get better
rewards. We can share agents’ actions through communication and calculate
actions through πi(ai|oi, aj ; j ∈ N(i)).

However, it is not practical to send all neighborhood actions to agent i for
decision-making, because agents act simultaneously rather than sequentially.
When an agent receives messages from other agents and changes its action,
this change will lead to new changed actions of other agents. To avoid this chain
reaction, we propose a two-step decision-making method:



Neighborhood-oriented Decentralized Learning Communication 7

1) obtain âi by π̂i(âi|oi), and send it to neighbors;
2) execute action πi(ai|oi, aj ; j ∈ N(i)) after the actions of neighbors are

received.
We refer to this approach as pseudo-pre-acting (PPA) mechanism, in

which â and π̂ are called pseudo action and pseudo policy, respectively. Note
that πi is the policy we actually learned by interacting with the environment,
so we update the pseudo-policy network π̂i with the causal inference indicator
mentioned above:

Lπ̂(θmi ) = DKL,j∈N(i)(π̂i(âi|oi; θmi )∥πi(ai|oi, aj ,mj)) (10)
There are two perspectives to explain why we make the pseudo action approxi-
mate the actual action: On the one hand, the consistency of the pseudo action
and the actual action makes the best response calculated by other agents ef-
fective; on the other hand, under the premise of receiving other actions, the
consistency of the two types of actions indicates that the current state is in
some kind of equilibrium.

4.3 Neighborhood-Oriented Actor-Critic

Combined with the above methods, we propose a neighborhood-oriented MARL
approach based on actor-critic: Neighborhood-Oriented Actor-Critic (NOAC).
The overall architecture of NOAC is illustrated in Fig. 2, which consists of three
parts: encoder network, actor network, and critic network.

Fig. 2. The overall architecture of NOAC. The blue lines are the execution dataflow,
while the red lines are training dataflow. Gray circles are neural networks.

In the execution phase, the encoder network encodes the local observations,
outputs the message mi and pseudo action âi, and then sends them to its neigh-
bors. After receiving messages and pseudo actions from its neighbors, the actor
network selects appropriate actions to interact with the environment and then
moves to the next epoch.

In the training stage, the encoder network calculates Le and Lπ̂ according to
the received messages and the actions performed by the actor network, respec-
tively, and updates parameters with the following loss function:

L(θmi ) = Le(θmi ) + Lπ̂(θmi ) (11)



8 H. Dai et al.

Concerning the actor network, we adopt the policy gradient to update parame-
ters as follows:

∇θa
i
J = ∇θa

i
[ logθa

i
πθa

i ;j∈N(i)(ai|oi,mi, aj ,mj)L(θci )] (12)
The main concern for training of the critic network is the calculation of TD-loss.
As mentioned above, the critic network is usually centralized because it needs
to estimate Qtotal, which directly influences the global reward. Since the global
reward cannot be directly assigned to individuals in multi-agent cooperation, the
centralized network is needed to evaluate the value function. Likewise, although
we propose that Ck can characterize part of the global state, we still cannot
assign the global reward to a concrete Ck. However, considering that in some
environments where agents move, each agent transforms the C value as it moves,
we have relaxed this constraint. Since the size of the neighborhood directly affects
the approximation of QC and Qtotal, we define the TD-loss of the critic network
as follows:

L(θci ) = γ ∗ Vj∈N(i)∪i(m
′
i,m

′
j ; θ

c
i ) +

|N(i)|
N ∗ r − Vj∈N(i)∪i(mi,mj ; θ

c
i ) (13)

Due to the decentralized network design, all agents run in parallel during ex-
ecution and training, which only need to be synchronized during communication
and environment steps. Therefore, the networks of agents can be deployed in dif-
ferent servers and communicate over protocols such as GLOO, NCCL, or TCP.
This feature is particularly efficient in large-scale multi-agent environments.

5 Experiments

To validate our findings, we conducted empirical studies to evaluate the per-
formance of the proposed NOAC. We implemented a test platform based on
multi-agent particle environment [12] and took a cooperative game as the envi-
ronment simulator.

5.1 Setup

Environment. We took the cooperative navigation game [10] as the simula-
tion environment. As shown in Fig. 3, there are N agents and N landmarks in
the environment, and the agents need to cooperate with each other to occupy
all the landmarks. The environment takes the sum of the minimum distance be-
tween all agents and landmarks as the global reward value, that is, there is no
individual reward for each agent.

Each agent has its own observation oi and takes the closer agents as its
neighbors. Each agent can only stand on one landmark, and there is a penalty
(negative reward) for collisions. In the experiment, we set N = 7, N(i) = 3, and
each agent starts at a random position. All other settings, such as the agent’s
speed, are default values from the open source library PettingZoo [18]. Note that
the agent’s environment is open and not restricted to a specific area, which may
differ from some other cooperative navigation settings.

Baselines. We compared the proposed method NOAC with the following
state-of-the-art MARL baselines :



Neighborhood-oriented Decentralized Learning Communication 9

Fig. 3. Cooperative navigation environment.
- TarMAC [1]: An attention-based learning communication method that

weighs the importance of incoming messages.
- IC3Net [14]:A gate-based method for deciding whether to communicate

with others, in which messages are sent in broadcast mode.
- MADDPG [10]:A classical CTDE algorithm without communication.
- DDQN [4]:A typical single agent algorithm. In our setting, it can sense the

global state and output all agents’ actions simultaneously.
Hyperparameters. To reduce the off-site factors in the comparison, we

adopted the same network structure in most baselines. In addition, we set the
learning rate lr = 1 × 10−3 and batch_size = 64 for all methods. We im-
plemented the testbed based on PyTorch and PettingZoo and ran it on a 3 ×
Tesla V-100 server.

5.2 Numerical Results

0 200 400 600

steps (×104)

−10

−9

−8

−7

−6

−5

−4

−3

fin
al

re
w

ar
d

algorithms
NOAC
MADDPG
TarMAC
DQN
IC3Net

(a)

0 200 400 600

steps (×104)

−8

−6

−4

−2

re
w

ar
d

algorithms
NOAC
MADDPG
TarMAC
DQN
IC3Net

(b)
Fig. 4. Comparison of final reward (a) and total reward (b).

Global Reward. First, we examined the rewards of multiple baselines,
which is the primary concern in MARL problems. Previous cooperative navi-
gation experiments often focused only on the average reward during the entire
training (referred to as "total reward" in the subsequent section), while we are
more concerned with the final state of the agent at the end of the round, the
final reward. Therefore, we compared the two types of rewards of baselines: final
reward and total reward.

The comparison of the final rewards is illustrated in Fig. 4(a), where the fi-
nal rewards of NOAC are approximately equal to TarMAC, and more significant



10 H. Dai et al.

than other baselines. This result shows the effectiveness of our approach. It is
worth noting that the baselines, including TarMAC, require centralized informa-
tion exchange, while NOAC only collects neighborhood information. Similarly,
NOAC also performs well on total rewards, as shown in Fig. 4(b). It should
be noted that the gap between baselines on total rewards differs less than that
on final rewards, so we treat the final reward as the metric for the following
experiments.

We executed 500 episodes with these trained models, and Tab. 1 shows the
means and standard deviations of the total and final rewards. NOAC outper-
forms all baselines with the highest average final rewards. These results suggest
that our partial information and message training approach is comparable to
methods that require centralized training.

Table 1. Summary of final reward and total reward of MARL baselines
Algorithms NOAC MADDPG TarMAC IC3Net DQN

Final Reward Mean -3.292036 -5.627667 -3.335745 -4.164599 -5.120261
Final Reward Std 0.595101 0.646373 0.766422 0.457646 0.626979

Total Reward Mean -3.358014 -4.168850 -3.201513 -3.512844 -4.132432
Total Reward Std 1.430986 1.219422 1.408928 0.964834 0.860662

Neighborhood Impact. Although NOAC is designed for neighborhoods,
it can also handle broadcast messages. To investigate whether NOAC does in-
deed includes neighbors’ messages into decision making, we compare it with
two cases: one where there is no communication at all, which is a decentralized
AC algorithm with independent control, which we call "NOAC-No-Comm"; the
other is a fully connected communication network with NOAC, which we call
"NOAC-FC".

After training with the same settings, the comparison of the experimental
results is illustrated in Fig. 5(a). Not surprisingly, the decentralized algorithm
NOAC-No-Comm without communication performs the worst. In fact, it per-
forms worse than all other baselines because it uses only local observations to
train the agents. This result confirms that communication significantly improves
MARL.

Nevertheless, it is worth noting that NOAC-FC with fully connected com-
munication does not provide a significant improvement in performance. At the
beginning of training, the convergence of NOAC-FC is even slower than that of
the partially connected case. This result illustrates that more messages are not
always better, and actually is consistent with the selective communication propo-
sition in related work. It also shows that neighborhood cognitive consistency
exists, and the agent can achieve an approximate effect of global observation
through the messages of neighbors.

Ablation. Finally, to further investigate the contribution of the encoder
network and pseudo-pre-acting to NOAC, we performed ablation experiments.
We conducted three different sets of experiments: 1) NOAC without pseudo-
pre-acting mechanism, "NOAC-No-Pseudo"; 2) NOAC without encoding the
neighbor observations, "NOAC-No-Encoder". Note that the raw neighbor ob-
servations are still transmitted; 3) the "NOAC-No-Encoder-Pseudo" algorithm



Neighborhood-oriented Decentralized Learning Communication 11

0 200 400 600

steps (×104)

−9

−8

−7

−6

−5

−4

−3

fin
al

re
w

ar
d

algorithms
NOAC
NOAC-FC
NOAC-No-Comm

(a)

0 100 200 300 400 500 600

steps (×104)

−9

−8

−7

−6

−5

−4

−3

fin
al

re
w

ar
d

algorithms
NOAC
NOAC-No-Pseudo
NOAC-No-Encoder
NOAC-No-Encoder-Pseudo

(b)
Fig. 5. Reward comparison of different neighborhood impacts (a) and ablation exper-
iments (b).
without encoder or pseudo-pre-acting mechanism, where each agent aggregates
the neighbor observations for training.

Fig. 5(b) shows a comparison of the ablation experiments, and it can be seen
that the removal of either mechanism leads to a slight decrease in performance. In
particular, the NOAC-No-Encoder-Pseudo with the encoder and PPA removed
shows a significant drop in reward. To illustrate the difference more clearly,
Tab. 2 shows the difference in reward for each setting. Note that all methods use
information from neighbors.

Table 2. Summary of the final reward of ablation experiments
NOAC No-Encoder No-PPA No-Encoder-PPA

Final Reward Mean -3.292036 -3.458257 -3.514603 -3.828242
Final Reward Std 0.595101 0.411429 0.955895 0.592898

Despite the lack of an encoder, the actor and critic networks can still ex-
tract information from raw observations. Thus, the gap is not that significant.
However, the encoded messages are about 3/4 times smaller than the original
observations (42 → 12), which shows a significant advantage in terms of latency
in both network transmission and tensor operations.

6 Conclusions

In this paper, we proposed a neighborhood-oriented MARL training method that
uses only messages from neighbors instead of global information to learn poli-
cies. Experiments show that this decentralized training method is comparable
to mainstream CTDE methods. This approach shows the potential of decentral-
ized learning methods for solving MARL problems. This decentralized MARL
learning is not only closer to real-world scenarios, but also has excellent advan-
tages in terms of computational efficiency. We expect that this paradigm could
be further developed and applied to more practical problems.

References

1. Das, A., Gervet, T., Romoff, J., Batra, D., Parikh, D., Rabbat, M., Pineau, J.:
Tarmac: Targeted multi-agent communication. In: ICML (2019)



12 H. Dai et al.

2. Ding, Z., Huang, T., Lu, Z.: Learning individually inferred communication for
multi-agent cooperation. NeurIPS (2020)

3. Foerster, J., Assael, I.A., de Freitas, N., Whiteson, S.: Learning to communicate
with deep multi-agent reinforcement learning. In: NeurIPS (2016)

4. Hasselt, H.v., Guez, A., Silver, D.: Deep reinforcement learning with double q-
learning. In: AAAI (2016)

5. Iqbal, S., Sha, F.: Actor-attention-critic for multi-agent reinforcement learning. In:
International Conference on Machine Learning (ICML) (2019)

6. Jiang, J., Lu, Z.: Learning attentional communication for multi-agent cooperation.
Advances in Neural Information Processing Systems (NeurIPS) (2018)

7. Kim, D., Moon, S., Hostallero, D., Kang, W.J., Lee, T., Son, K., Yi, Y.: Learning
to schedule communication in multi-agent reinforcement learning. In: International
Conference on Learning Representations (ICLR) (2019)

8. Leonardos, S., Overman, W., Panageas, I., Piliouras, G.: Global convergence of
multi-agent policy gradient in markov potential games. In: ICLR (2022)

9. Lowe, R., Foerster, J., Boureau, Y.L., Pineau, J., Dauphin, Y.: On the pitfalls of
measuring emergent communication. In: AAMAS (2019)

10. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: NeurIPS (2017)

11. Mao, H., Liu, W., Hao, J., Luo, J., Li, D., Zhang, Z., Wang, J., Xiao, Z.: Neigh-
borhood cognition consistent multi-agent reinforcement learning. AAAI (2020)

12. Mordatch, I., Abbeel, P.: Emergence of grounded compositional language in multi-
agent populations. arXiv preprint arXiv:1703.04908 (2017)

13. Rashid, T., Samvelyan, M., de Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.:
Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In: International Conference on Machine Learning (ICML) (2018)

14. Singh, A., Jain, T., Sukhbaatar, S.: Individualized controlled continuous commu-
nication model for multiagent cooperative and competitive tasks. In: International
Conference on Learning Representations (ICLR) (2019)

15. Son, K., Kim, D., Kang, W.J., Hostallero, D.E., Yi, Y.: Qtran: Learning to fac-
torize with transformation for cooperative multi-agent reinforcement learning. In:
International Conference on Machine Learning (ICML) (2019)

16. Sukhbaatar, S., Fergus, R., et al.: Learning multiagent communication with back-
propagation. In: NeurIPS (2016)

17. Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V., Jaderberg, M.,
Lanctot, M., Sonnerat, N., Leibo, J.Z., Tuyls, K., Graepel, T.: Value-decomposition
networks for cooperative multi-agent learning based on team reward. In: AAMAS
(2018)

18. Terry, J.K., Black, B., Grammel, N., Jayakumar, M., Hari, A., Sulivan, R., Santos,
L., Perez, R., Horsch, C., Dieffendahl, C., Williams, N.L., Lokesh, Y., Sullivan, R.,
Ravi, P.: Pettingzoo: Gym for multi-agent reinforcement learning. arXiv preprint
arXiv:2009.14471 (2020)

19. Wang, T., Wang, J., Zheng, C., Zhang, C.: Learning nearly decomposable value
functions via communication minimization. In: ICLR (2020)

20. Wen, Y., Yang, Y., Wang, J.: Modelling bounded rationality in multi-agent inter-
actions by generalized recursive reasoning. In: Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence. IJCAI’20 (2021)

21. Zhang, S.Q., Zhang, Q., Lin, J.: Efficient communication in multi-agent reinforce-
ment learning via variance based control. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS) (2019)


