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Abstract

In this paper, a heterogeneous spatial-temporal similarity search framework is pro-
posed, in which the datasets come from multiple different asynchronous data sources.
Due to measuring error, data loss, and other factors, the similarity search based on sin-
gle points along a trajectory usually cannot fulfill the accuracy requirements in our het-
erogeneous case. To address this issue, we introduce a concept of the spatial-temporal
cluster of points, instead of single points, which can be identified for each target query.
By following this concept, we further design a spectral clustering algorithm to con-
struct the clusters in the pre-processing phase effectively. And the query processing is
improved for the accuracy of the search by unifying multiple search metrics. To val-
idate our idea, we also prototype a clustered online spatial-temporal similarity search
system, "Osprey", to calculate in parallel the similarity of spatial-temporal sequences
in the heterogeneous search on a distributed database. Our empirical study is conducted
based on an open dataset, called "T-Drive", and a billion-scale dataset consisting of
WiFi positioning records gathered from the urban metro system in Shenzhen, China.
The experimental results show that the latency of our proposed system is less than 4s
in most cases, and the accuracy is more than 70% when the similarity exceeds 0.5.
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1 Introduction

With the rapid developments of sensing technologies and the explosive availability
of mobile devices, massive volumes of spatial-temporal traces of moving objects,
i.e., trajectories, are being generated and gathered for diverse digital services at an
unprecedented speed [1]. In particular, given a trajectory Q, the trajectory similarity
search refers to the query search that can find all subsets of trajectories from a certain
dataset, whose similarity factors to Q exceed a pre-defined threshold 6 [2, 3]. The
trajectory similarity search is one of the fundamental operations in many space-time
related applications as the found trajectories often contain rich information regarding
the queried moving object, which can be exploited for various purposes [4, 5]. For
example, policemen can use the trajectory of a target vehicle to detect what other
moving objects once followed its tracks during a specified period of time in the criminal
investigation.

Given the importance of trajectory similarity search, there exist many studies with
an attempt to be more accurately approximate to real trajectories in various contexts
[4-8]. However, these studies often target the homogeneous case where the information
used in the query and the collected trajectory sequences stored in the spatial-temporal
database are in general from the same data domain, or in particular, from the same
data source, say both are extracted from the GPS location data. As such, they are not
always effective in certain cases where the query information is heterogeneous in that
they are from different data domains or data sources, which is often manifested in short
of some queried data segments with respect to the stored trajectory information. A
typical example is in the field of transportation, we may hope to find the most similar
GPS trajectory and detailed information of a vehicle by leveraging some observed
track points of the vehicle from Closed Circuit Television (CCTV) [8]. Such a kind
of requirements can also be found in other fields, such as wild animals tracking [9],
visitor plan recommendation [10], etc., where similar trajectories and corresponding
information based on a given observation or sampling trajectory are always desired.

In this paper, we focus on the heterogeneous spatial-temporal similarity search
problem, which is characterized by the feature that query data and database data
might not come from the same single data source. Rather, they could be from mul-
tiple different asynchronous data sources in support of the query. For example, the
spatial-temporal database may maintain the trajectory information extracted from GPS
datasets while allowing the query to be constructed from WiFi connection data. This
could happen in a case that a policeman wants to confirm if a suspect is the per-
son who once walked alone the same path to a place during a period of time. The
database has recorded the trajectories based on the person’s GPS-equipped device.
However, unfortunately at this time the suspect’s GPS information was not available,
and only his WiFi connections along a path were detected, each being maintained for
a while to show his stationary point. With the heterogeneous similarity search, the
policeman can retrieve the required information by comparing the trajectories from
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different data sources. As with this case, the heterogeneous similarity search could be
also useful in other applications and meanwhile substantially improving the quality
of spatial-temporal services.

One of the main challenges from such heterogeneous search may lie in the fact
that the asymmetric information between query and database makes the traditional
similarity search based on point-wise fashion as in the homogeneous cases ineffective
to fulfill the accuracy requirements in our settings. To address this challenge, we first
deliberately extend a spectral cluster algorithm in an off-line pre-processing phase to
group the spatial-temporal points in the queried area and allow a so-called cluster,
instead of a single point, to be identified for each point in the query to search the
sub-trajectory with high similarity. After the sub-trajectory in each cluster has been
found, the full similar trajectory is constructed by concatenating them as a whole.
To improve the accuracy of the search we also unify multiple search metrics with an
attempt to enhance the robustness and stableness of the metrics.

Unfortunately, due to the involved massive computational workloads and the online
requirements of the query processing, the proposed approaches may not be effi-
cient. To cope with this problem and validate our idea, we also prototype an online
spatial-temporal similarity search system, called "Osprey", which, by integrating the
proposed algorithms in two major components—a data pre-processing component and
a query processing component, calculates in parallel the similarity of spatial-temporal
sequences in the search based on a distributed database.

Our empirical study is conducted based on billions of WiFi positioning records
and WiFi connection data items gathered from the urban metro system in Shenzhen,
China [11]. The similarity search of these two kinds of datasets can be used to not only
improve the indoor positioning and but also find companions, which is very useful
in security controls as we exemplified above. The experimental results show that our
proposed approach can achieve relatively good performance in heterogeneous spatial-
temporal similarity search in terms of both latency and accuracy. To the best of our
knowledge, we are the first to conduct such a similarity search based on the WiFi
positioning records and the WiFi connection data items from the urban metro system.
To summarize, we make the following contributions in this paper:

e Weextend a spectral clustering algorithm for heterogeneous similarity search prob-
lem where the query data and the database data might be from multiple different
asynchronous data sources.

e We propose multiple metrics for heterogeneous trajectory similarity measurements
and build a new model to calculate the similarity for online accuracy improvements.

e We design and implement an online spatial-temporal similarity search prototype
system "Osprey" based on a given distributed database for the proof-of-concept.

e We conduct extensive experiments to exploit the heterogeneous trajectory datasets
for the evaluation of the performance of Osprey. The experimental results show
that the latency of the system is less than 4s in most cases, and the accuracy is
more than 70% when the similarity exceeds 0.5, both are better than the compared
algorithms.

The remainder of the paper is organized as follows. Sect. 2 discusses some related
work and Sect. 3 introduces the formulation and challenges of the similarity search
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problem. After that, we describe the framework of Osprey in Sect. 4 and cover its
implementation of in Sect. 5. We present the experimental results are presented in
Sect. 6, which is followed by the conclusion and discussion in Sect. 7.

2 Related work

Trajectory similarity search aims at finding from a dataset the trajectories with the
highest relevance to a query argument. This procedure typically consists of a defini-
tion step and a query processing step [12]. First, a similarity function is defined to
evaluate the spatial and temporal similarities between two trajectories, it may involve
spatial [13], temporal [14], textual [15], and density elements [2]. Second, an efficient
algorithm is developed to retrieve the trajectories which are spatial-temporally close
to the query trajectory. Previous works on performing the trajectory similarity search
require massive iterative computation and are thus unfriendly to parallelization, such
as Dynamic Time Warping (DTW) [6, 16], Longest Common Sub-Sequence (LCSS)
[17], Edit Distance on Real Sequence (EDR) [3], and so on.

Some pieces of research use tree structures to speed up the similarity search, such
as TSEIT [18] and Proximity Forest [19]. TSEIT is a search tree-based approach that
accelerates the data retrieve by storing the time-series envelopes in its nodes. With
the design of the tree structure, the performance of TSEIT is significantly improved.
Proximity Forest, on the other hand, is an ensemble of proximity trees, which is built on
top of decision trees. The experiments demonstrate that the Proximity Forest can not
only improve the performance but also achieve high accuracy. However, this algorithm
has a poor tolerance to measurement errors and does not perform satisfactorily to
time inconsistency and data loss in multi-source heterogeneous trajectories. Kondor
et al. [20] conducted an in-depth study on the matching of data sets from different
sources, and show that the main determinant of matchability is the expected number
of co-occurring records in the two datasets. Therefore, for the heterogeneous search
problem, we should pay more attention to increasing the number of matches as much
as possible, which contributes to improving the accuracy.

To address the measurement error issue, an intuitive approach is to leverage the
method of relaxation. Based on this idea, Pelekis et al. [21] defined two types of
similarity, spatial-temporal and (temporally-relaxed) spatial similarity, for trajectory
similarity search. As an improvement, Mao et al. [8] presented a segment-based tra-
jectory similarity measure. Comparing with the point-point distance, the proposed
segment-segment distance can not only effectively reduce the sensitivity influence of
the sampling methods but also substantially improve the accuracy of similarity search.
The idea of segmentation is widely used in spatial-temporal data processing systems.
It speeds up the range queries and achieves high degree of parallelism by discretizing
the spatial and the temporal dimensions. In contrast, DISTIL [22, 23] is a distributed
in-memory spatial-temporal data processing system that supports low latency concur-
rent processing of spatial-temporal range queries by isolating the calculations to the
nodes containing the relevant tiles. We are inspired by this work to use a distributed
database for parallel similarity search. Unfortunately, the segment-based method can-
not address the synchronization issue with respect to the inconsistent acquisition rates
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caused by multi-source trajectory efficiently. To address this shortcoming, Sun et
al. [24] proposed a spatial and temporal constrained trajectory similarity (STCTS)
model for asynchronous multi-source trajectories. In this method, they proposed a
concept, called “optimal matching point", and counted it under the spatial and tempo-
ral constraints within a threshold range to measure the similarity between trajectories
from different sources. Unlike the simple statistical matching points, Hung [25] et
al. gave a formulation of club-aware trajectory similarity and a club-aware cluster-
ing algorithm to cluster the similar trajectories into groups. This way of clustering
the points of multiple trajectories inspired us to propose a cluster-based method to
improve the search accuracy.

Although the proposed spatial-temporal cluster algorithm can potentially improve
the search accuracy, it also brings a large number of computation workloads. To achieve
an online similarity query, parallel computing is an appealing way to improve the per-
formance. Xie et al. [5] described a generic and scalable framework for processing the
distributed similarity search from a large set of trajectories. Although their Spark-based
framework is impressive with respect to computing capability, its latency is relatively
large. Li et al. [26] leveraged the Storm framework and designed a corresponding
suffix tree index to speed up response time. Although they did not perform similarity
searches, we got some inspiration from the index design. Therefore, to address the
same latency issue, Phoenix [27] is used in our Osprey, which can conduct a similarity
search on a billion-level dataset and reduce the latency for better overall performance.

3 Problem formulation and challenges

This section introduces some related background knowledge and the formulation of
the problem in this research. The traditional similarity search problem is defined as
follows: given a trajectory Q extracted from data source S, the trajectory similarity
search will return all the subsets of trajectories extracted from the same data source,
whose similarity factors to Q exceeds a pre-defined threshold 6 [2, 3]. More formally,
to simplify the input query trajectory in similarity search problem, we define it in
Def 1.

Definition 1 (Input Query Trajectory) Q = [(x1, Y1, 81, te1), ..., (Xn, Yn, tSp, ten)],
here (x, y) denotes the position of the spatial plane, and s and fe denote the start time
and the end time spend at this point, respectively.

We abstract the spatial-temporal point as a triple (x, y, t) and confirm the unique
trajectory with the exact spatial and temporal information of a particular observation
point. To identify the unique trajectory, we use a unique tid to mark the movement
trace (i.e., a specific trajectory #id of target object). Then, given trajectory dataset I,
we can define a trajectory point p in D as follows:

Definition 2 (Trajectory Point) p = L(tid, x, y, t) i.e. ﬂ((lidl,xl, y1, 1), (tida, x7,

v2, 1)) € D\(x; = x2) A (y1 = y2) A (1] = 1), here, (x, y) specifies the position of
spatial plane, and ¢ represents the collection time.
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Based on this definition, the traditional similarity search problem for any query
trajectory Q is defined to find the subset R from DD that satisfies:

R={sim(Q,r)>0|r e} (1)

The main difference between homogeneous and heterogeneous searches depends
on whether or not Q and D come from the same data source S. More importantly, com-
pared to its homogeneous counterpart, the heterogeneous similarity search problem
is characterized by its ground truth, which can be used to validate whether Q and the
most similar trajectory are traces of the same target (i.e., the accuracy we discussed
later). Therefore, the objective of heterogeneous similarity search is to search the most
similar trajectory r*, which is formalized as follows:

r* = argmax{sim(Q, r)} 2)
reD

here, sim denotes the similarity measure function, which is often defined as the distance
between two trajectories (see Sect. 4.3.1), and Q and rs denote the query trajectory
and the trajectory in D, respectively. Although this form of definition is identical to
that of the similarity search in traditional cases, they are different in some aspects.
Traditional similarity search usually aims at the data collected by the same mea-
surement, that is, Q and r are homologous or come from the same sensing system.
This property ensures that the two sequences can be aligned well even if there is a
small measurement errors between them. The similarity can be measured by accu-
mulating the distance between all the pairs of aligned points. However, besides a lot
of complicated calculations for distance computation, alignment-based methods also
need the two trajectories to have approximately the same number of sampling points.
Unfortunately, for the trajectories from different domains (e.g., different sensors), their
number of sampling points is not restricted and coupled with the huge amount of data.
Consequently, it is hard for alignment-based methods to be adopted in such a scenario.
Besides, when the query data and the trajectories in database come from two
completely different collecting systems, e.g., the trajectory of different dimensions
collected by different sensors in urban computing, there is no direct interrelation
between them. As such, it is even hard, if not impossible, to recognize that the two
trajectories are belong to the same object (e.g., face-recognizing data and WIFI con-
nection data). As indicated in our study, the heterogeneity is first manifested in data
Jformats as shown in Def. 1 & 2 where the query trajectory is defined by a sequence
of 4-element tuples (x, y, ts, te) while the trajectories in database are described by a
sequence of triples (x, y, t), say, for example, WiFi connection vs. GPS information.
In addition to the heterogeneity in data format, another is in the data skewness as
shown in Fig. 1. Due to different sensing systems, one trajectory ("'query trajectory")
may be very sparse and skewed while the stored trajectories could be relatively detailed
and regular. For example, the WiFi connections are not always available evenly in
different places along a path while the GPS location information could be available
regularly. Given this scenario, it is not only difficult to make pairwise alignments
between them for similarity analysis but also not always appropriate to adopt those
Euclidean-distance based methods to calculate the similarity as the found paths with
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Fig. 1 A case that two types of data come from different sensing systems. WIFI connection data ("query
sequence" in the figure) does not pinpoint users’ specific location, only the time spent near an acquisition
device. In contrast, face recognition ("trajectory" in the figure) can track the trajectory through multiple
cameras

small Euclidean distances might not the paths for the query object!. Thus, some ways
based on probability and set theories need to be integrated for compensations. Such a
strategy usually involves the fusion of multiple sensors to validate two trajectories in
different dimensions for the same object.

Given these heterogeneity challenges, the traditional similarity search based on the
point-wise methods is not always effective anymore to fulfill the accuracy requirements
in our settings. Therefore, how to achieve an effective heterogeneous similarity search
is a highly desired problem to be solved.

4 Framework

This section introduces the framework of our approach where an extended spatial
clustering algorithm is first designed to partition the spatial plane to facilitate the
heterogeneous search and then a similarity measurement that combines multiple often-
used metrics is presented to improve the search accuracy.

4.1 Overview

As mentioned above, for a multi-sensor collection system, the heterogeneous search
suffers from the inherent alignment issue between the query and the stored trajectories
due to the time and measurement inconsistency. As such, the traditional distance-based
similarity search (i.e., sim(Q, rs) > 6)isnotalways sufficient. To this end, we propose
a new two-phase similarity search framework as shown in Fig. 2.

The first phase is called Zoom-Out phase where the spatial plane all data collection
points is partitioned through an extended spatial clustering algorithm in pre-processing

! The paths up and down a viaduct are actually different paths although they have small Euclidean distances.
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Fig. 2 Two-phase similarity search framework. There are two major parts in this framework: Zoom-Out
and Zoom-In, representing the two stages of the search. The two parts interact via a distributed database
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Fig. 3 The space plane is divided into multiple clusters, and different colors represent different clusters.
Trajectory A (red dashed line) and B (blue line) represent two different types of trajectories, starting from
bottom-left corner to top-right corner (color figure online)

stage into several regions as shown in Fig. 3 where the distance between the different
regions after the partition is as large as possible, and the distance between points
inside regions is as small as possible. Then, the trajectories are indexed according to
the partitioned regions to form spatial-temporal clusters.

The second phase is called Zoom-In phase, which is performed in the online query
processing stage where the concept of distribution approximation is used to measure
the probability that the same object’s movement generates two different trajectories
through the intersection of different clusters. In particular, the query trajectory is
divided into different parts in both time and space as shown in Fig. 3. As such, we can
distribute the similarity calculations into different spatial-temporal clusters, which not
only maximizes the parallelism but also aligns different trajectories into groups to ease
the similarity calculations. After the sub-trajectory in each cluster has been found, the
full similar trajectory is constructed by concatenating them as a whole. To ensure the
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high cohesion of spatial-temporal clusters, the trajectories should be partitioned by
using clustering algorithms as a pre-condition, which we will discuss in the sequel.

4.2 Spatial clustering algorithm

There are a variety of clustering methods that can be used to partition the trajectories
in our settings (e.g. K-Means [28], DBSCAN [29], TAD [30], etc.). These algorithms
mainly take into account the Euclidean distance between object positions. However, in
most practical scenarios, objects (e.g., commuters and vehicles) often move in a spatial
network rather than in a Euclidean space, and thus exhibit some gathering behaviors.
So we adopt the spectral clustering algorithm [31] in our case as in general it performs
better than traditional clustering methods with respect to highly cohesive datasets.

Spectral clustering is a technique rooted in graph theory, which relies on a weight
matrix’s eigenstructure to partition points into disjoint clusters in such a way that
points in the same cluster have high similarity while points in different clusters have
low similarity. Typically, the weight matrix is often derived from a set of pairwise
similarities defined by various types of distances between the points to be clustered.
However, in our work, instead of using the distance-based similarities between points,
we leverage the number of adjacencies defined as cnt (y, y,),(x;,y,) 10 Eq. (3) in histor-
ical spatial-temporal trajectories to represent the relationships between spatial point
a(xq, yq) and b(xp, yp),

N (x4,y4). (xp. ) = Z I(tr, (xa, ya), (Xp, Yb)) (3)

treD

where D is the trajectory dataset and the number of pair-wise adjacencies for a specific
time-ordered trajectory #7 of an object is defined as follows:

i the number of times that
I(tr, (x4, Ya), (Xp, Vb)) = a follows directly after b in tr )
0 otherwise

Cnt (x,,v4), (xp,yp) SPECifies how many trajectories pass by these points, which is more
representative with respect to the interrelations between the points on trajectory as
the found paths with small Euclidean distances might not the correct paths for the
query object as we discussed. As such, it is a better indicator of the pairwise similarity
between the points from the perspective of the trajectory.

To represent the spatial plane by a graph as inputs to spectral clustering algorithm,
we abstract the data points on the plane as well as their relationships into vertexes
and edges. For the vertex, given the huge number of different points represented by
the original latitude and longitude (x, y), it is necessary to encode the adjacent points
into the same code, which can not only reduce the amount of calculations but also
facilitate the representation of adjacent graphs. To this end, we encode the continuous
location (x, y) of the target object with GeoHash [32], whose code has a corresponding
relationship with GPS(x, y), and precision is related to the encoding length. As such,
it is generally enough to select the corresponding precision according to the size of
the encoding space.
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can be regarded as an undirected graph. categories through spectral clustering, and dif-
ferent colors represent different categories.

Fig.4 An example of an undirected graph formed by encoding

After the GeoHash encoding, the two-dimensional spatial information is reduced
to a single value of “HashID”, denoted by /. In this way, the definition of a point can
be expressed as an 3-element tuple L (i, [, t), and the trajectory sequence can be sorted
along the time axis as follows:

P = [(llv [l)s (121 tz)v weey (lnv tn)], n<n<--<ty (5)

It is reasonable to assume that adjacency relationships exist between pair of col-
lected points [, and [, if the same trajectory ID (i.e., tid) appears successively in [,
and /. This relationship can be specified with edge e that connects the pair of vertexes
1, and [, so that an undirected collection graph can be constructed as shown in Fig. 4a,
which is the input to the clustering algorithm for the space partition into multiple
clusters (regions).

Let all trajectories be transformed into trajectory sequences according to their
tids, then we can obtain the adjacency relationships e and vertex v by splitting
each trajectory to (I4, Ip) (I4, I represent all the adjacency "HashID" pairs). Let the
weight w’(l, Ip) of e(ly, l) be the number of adjacencies between [, and I, (i.e.,
w (g, lp) = Cnt (x,,v4),(xp, ) 10 EqQ. (3)). Since it is an undirected graph, the total
weight w(l,, [p) is set as follows:

w(la, lp) = w'(la, Ip) +w' Uy, la) (6)
The weighted adjacency matrix of the graph G(V, E, W) is the matrix W =
{w(l;, 1) i, j =1, ..., n}, and the degree of vertex v; € V is defined as:
n
di =Y w1} (7
Jj=1

The degree matrix Deg is defined as the diagonal matrix with the degrees d, ..., d,
on the diagonal.

d 0---0
0dr-- 0

Deg=| . .. . @)
00---d,
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The main tools for the spectral clustering are graph Laplacian matrices. The non-
normalized graph Laplacian matrix is defined as:

Lap = Deg — W )

Let A = (A1, A2..., A,) and A; be the eigenvalues of Laplace matrix Lap, and map
each trajectory to a lower-dimensional representation based on the corresponding
eigenvectors. Finally, the points are assigned to a given number (which is denoted as
n_cluster) of classes by the K-Means algorithm based on the new representation.

Algorithm 1 Data pre-processing algorithm

Require: D(L(i, x,y,t)) : a heterogeneous dataset of L(i, x, y, t) ; n_cluster : the number of clusters
Ensure: partition table C(l, cid)

1: initialization

2: RD(lg4, Ip) < encode raw data by GeoHash and transform into trajectory pair.
3: initialize matrix Wy, x, < 0

4: for ( doeach pair (I4, [}) in RD)

S: Wap < Wyp +1
6.
7
8

Wpa < Wpa + 1 Eq.(6)
: end for
: initialize matrix Deg,, ., < 0
9: for (i < 1...n) do

10: d; <0

11:  for (j < 1..n) do

12: di < d; + wij; Eq.(7)
13:  end for

14:  Dj; < d;

15: end for

16: Lap <— Deg — W; Eq.(9)

17: Ay, <=solve | Lap — A1 |= 0 extract the eigenvalues (A1, A2, ..., An)
18: initialize matrix M, x,

19: for (i < 0...n) do

20:  v; <—extract eigenvector for A;

210 My <!

22: end for

23: C(l, cid) < K-Means(M, n_cluster)

The complete algorithm is given in Algorithm 1. At first, the algorithm uses Geo-
Hash to encode the raw data spatial information and transforms it into trajectory
pairs.(Line2). Afterward, a clustering algorithm is used to group the Spaces on
the trajectories. Firstly, the weights of the adjacency matrix of the undirected graph
are calculated on the sequence (Line3-7). Then the degree matrix is calculated
(Line8-15), and finally the Laplace matrix Lap of the adjacency graph is obtained
(Linelé6). Finally, through the eigenvalue decomposition of Laplace matrix Lap
(Linel?7), the eigen matrix M of the spatial-temporal sequence can be extracted
(Linel8-22). Then the partition table C of the space can be obtained by using the
K-Means method (Line23).

A working example of this algorithm is illustrated in Fig.4b where the vertices are
clustered according to the generated weighted undirected graph. The id of the cluster
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(cid) is used as the track point index. There are more adjacencies between points
within each cluster, which means that they have a higher probability of belonging to
the same area. They can be considered to be in the same position when calculating
the similarity. After the space is partitioned by clustering, a lookup table C(/, cid) is
obtained. With this table, the spatial-temporal trajectories of the raw data can then be
processed into spatial-temporal clusters and stored. Usually, the time covered by the
spatial-temporal cluster would be abstracted as a range from starttime to endtime, the
trajectory in the same partition can thus be defined as (i, cid, t;, t.). However, we still
keepitas [(i, cid, t), (i, cid,t + 1), ..., (i, cid, t + k)]; (k = t, — t;) for the sake of
simplification in the calculations.

We are now making an approximate time complexity analysis of Algorithm 1, let
m be the number of data records, i the number of tids, and n the number of location
points after encoding. For Algorithm 1, the time complexity of Line?2 is O (m). While
the time complexities of Line4-7,Line9-15 and Linel7-23 are O (n?), 0(n?)
and O (n?), respectively. Therefore, the approximate time complexity of Algorithm 1
is O(n® +m).

4.3 Query procedure

In the Zoom-In stage, we first introduce the design of the similarity function and
illustrate the algorithm of the online query processing afterward.

4.3.1 Similarity function

As mentioned above, a target can be identified by its number of occurrences. However,
in most cases, there is no guarantee that a corresponding data collection exists in our
observation point. As a result, the occurrence of the target is often equal to or even
less than other points for various reasons.

To solve this problem, the general approach is to measure the similarity by per-
forming the spatial-temporal alignment of data and thereby calculating the distance
between the aligned points [6, 17]. In contrast, the points in our spatial-temporal cluster
have been aligned already, what we need to do is calculating the sum of the similari-
ties for each observation point. Therefore, the questions in our consideration are: (1)
interference caused by fixed sensor equipment; (2) large errors of positioning data; (3)
serious losses of location data. For the answers, we deliberately exploit three metrics
for the similarity measurements: (1) Self-Information entropy [33]; (2) Jaccard index
[34]; (3) Kullback-Leibler divergence [35], each one with its own advantages to com-
pensate for each other. We will briefly discuss these metrics with the rationales behind
our choices.

a. Self-information entropy

In practice, a trajectory always presents a certain periodicity, and the probability of
its tid appearing in a period tends to be stable. For a spatial-temporal similarity search,
we need to reduce the influence of some fixed sensor devices on the search results.
These noise data from the fixed equipment usually have a large number of trajectories
at the same location and a high-frequent collection rate, which could lead to low
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information entropy. So the first metric we considered is self-information entropy,
which is defined as h(x) = —log, p(x), here, p(x) denotes the probability of tid
appearing in the current period. Let the frequency of data collection be s, the period of
time be T, and the number of times a trajectory tid has been collected be count(tid),
then p(x) can be calculated as:

B count(tid)
p(x) = s (10)

To make a meaningful comparison between different metrics, we leverage the z-
score algorithm to standardize the metric into a dimensionless form. The definition of

the z-score as follows:
ZScore(X) = X~ EIX] (11
8(X)
here, E[X] denotes the the expectation of X, §(X) represents the standard deviation of
X . Therefore, combining with Eq. (11), we can get the definition of the self-information

entropy metric bits as follows:
bits = ZScore(—log, p(x)) (12)

b. Jaccard index

The self-information entropy reflects the characteristics of trajectory itself, but it
cannot measure the similarity between two identical clusters and the query sequence.
Thus, we are advocated to introduce Jaccard index [34] to measure the similarity of
each spatial-temporal cluster. The Jaccard index is a statistic used for gauging the
similarity and diversity of sample sets.

We define cnt; as the number of tid occurrences in the same spatial-temporal
cluster, cnt, as the number of tid occurrences in the time interval [z, #,]. Combined
with the definition of the input sequence Q in Def. 1, the Jaccard coefficient formula
is: ent

J = i - (13)
- + cnt; — cnt,
Similarly, Eq. (11) is used for standardization, and the definition of indicator jaccard
is obtained as follows:

jaccard = ZScore(J) (14)

c. Kullback-Leibler divergence

The Jaccard index measures the similarity of a single spatial-temporal cluster while
Kullback-Leibler (KL) divergence [35] is a measure of how one probability distribu-
tion is different from a second, reference probability distribution, which is defined as
follows:

N
Dr(pllg) =Y p(xi) x (log; p(xi) — logy g (x;) (15)
i=1
First, let’s define ds as the the number of times of input sequence Q and ds; as
the the number of times of input sequence on each spatial-temporal cluster, then the
distribution of input sequence can be obtained as p(x;) = ds;/ds.
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Then, given the complexity of calculating the trajectory tid distribution in each
spatial-temporal cluster, we simplify the distribution of each #id to the distribution of
tid in spatial-temporal clusters of the input sequence. Define the number of times an
tid appears in all the spatial-temporal clusters as es, and the number of times of an
tid appears in each spatial-temporal cluster as es;, so the distribution ¢ (x) of an tid
is defined as ¢ (x;) = es;/es.

Finally, suppose the number of spatial-temporal clusters appearing in Q is N, the
complete calculation formula of KL divergence can be obtained as follow:

kld = ZScore(DkL(pllg)N,) (16)

By leveraging the standardization and the weighted average method, we can calcu-
late the similarity matrix of the trajectories, which can be used to measure the similarity
and rank these trajectories. Rather than using one distance metric, the three metrics
are more robust to noise and more tolerant of measuring errors. The combine model
for features is described in the next section.

4.3.2 Online query processing

In the online query processing part, a query sequence is given to search similar tra-
jectories in the database. For efficient data retrieval and similarity matrix calculation,
we propose a query processing algorithm to decompose the query and calculate the
foregoing metrics in parallel, as illustrated in Fig. 5.

At the beginning of query processing, we also need to lookup cid from lookup
table C(/, cid) for each L(x, y). The whole sequence from different sources can be
decomposed into sub-queries made to each cluster, and aggregated by following union
operation. Finally, the metrics is calculated and the feature matrix is generated as shown
in Algorithm 2.

In Algorithm 2, each spatial-temporal segment of the query sequence is determined
its cid by looking up C(/, cid) and decomposed into sub-queries firstly (Linel-6),
and the resultset is queried in the database in parallel (Line7-8). Finally, according to
the design of similarity index: entropy, Jaccard and K L are counted on the resultset,
and the feature matrix F, x4 is generated (Line9-12), which is defined as follows:

Fuxa = {(tid (i), bits(i), jaccard (i), kld(i)) | i =1, ..., n} (17)

After getting feature matrix F), .4, we calculate the similarity according to it.
The feature matrix is a high-dimensional representation of the similarity matrix,
which indicates three-dimensional preferences for similarity search, and different
data sets have different sensitivity to each metric. Our goal is to combine this high-
dimensional representation into a similarity, which can be regarded as a variant of
the multi-objective optimization problems (MOPs). The weighted sum method is a
typical method to solve this problem, which converts multi-objective into a single-
objective optimization through a linear combination [36]. Meanwhile, the coefficients
are specific to the dataset, and we can learn these coefficients according to the prop-
erties of dataset and user’s favorites. To this end, we add weight coefficients: «, 8, y
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Fig.5 Decomposing the query to calculate the similarity. Deconstruct the example in Fig.3 into five parts
to computing the similarity in parallel

(o, B,y €[1,0); o + B+ y = 1.0) to the metrics that are already dimensionless, the
final similarity formula is as follows:

similarity = o X bits + X jaccard +y x kld (18)

where the three indicators measure the property of intra-trajectories, inter-relationships
between spatial-temporal clusters, and the property of inter-trajectories, respectively.
Therefore, the three respective coefficients are used to control the preference degree
of the similarity search. For example, if some noise data with fixed positions need to
be filtered out, & needs to be appropriately increased while if those trajectories staying
at the same place as long as possible need to be found out, a larger value of 8 should
be taken into consideration. Finally, if the trajectories that occur together at multiple
different locations are desired, a higher value of y will improve the accuracy.

Finally, the resultset is ranked by the similarities according to these parameters
(Linel3-14). Let k be the number of trajectories in the resultset, v be the average
number of points of each trajectory. It’s obvious that Linel-6 takes order K time,
and Line9-13 only needs to traverse all the resultset linear times to calculate the
three metrics with a time complexity O (kv), and the time complexity of the sorting
in Linel5 is O(klogk). Overall, the approximate time complexity of Algorithm 2
is O (k(logk + v)).
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Algorithm 2 Online query process

Require: QO = [(x1, y1,151,te1), ..., (Xn, Yn, tSn, ten)]

Ensure: trajectory r*

1: for (each L(x, y, ts, te) in Seq) do

2: | <—GeoHash(x, y)

cid <« lookup clusterID for / in C(l, cid)

(tis, tie) < (MaxValue — L(ts), MaxValue — L(te))

subsqls < subsqls + "select * from table between cid-+tis and cid+tie"
subsqls < subsqls + "union all"

7: end for

8: sql < "select agg(metrics) from "+subsqls+"group by id,cid"

9: resultset < execute sql in phoenix

10: bits < compute the entropy for resultset; Eq.(12)

11: jaccard < compute the Jaccard index for resultset; Eq.(14)

12: kld < compute the KL divergence for resultset; Eq.(16)

13: Fj,xq4 < (tid, bits, jaccard, kld)

14: Sim[tid, similarity] < [F[tid]; [a, B, y] x Flbits, jaccard, kld]T]; Eq.(18)
15: r* <« Topl( ranking resultset with Sim )

AR

5 Framework implementation
5.1 Overview

To prove the concept of the proposed two-phase framework for heterogeneous simi-
larity search, we prototype an online system, called "Osprey", to improve the accuracy
and latency of the search. In Osprey, the raw data are partitioned into spatial-temporal
clusters in the Zoom-Out phase, and the corresponding metrics are designed for sim-
ilarity ranking in the Zoom-In phase.

This section provides an overview of the Osprey design, which is composed of
two major components: a data pre-processing component and a query processing
component as shown in Fig. 2. In the beginning, the raw data are formatted and indexed
by the pre-processing component and stored in a database. After the pre-processing is
performed, the query processing can accomplish the online similarity query to these
stored data.

In the Zoom-Out phase, Osprey first applies the modified clustering algorithm as
described in Sect. 4.2 to the historical data, and then format the raw data and store
them into a database. While in the Zoom-In part (Sect. 4.3.1), the similarity function
with three metrics as well as a query processing is implemented.

Since the use of the clustering algorithm with high complexity and the spatial-
temporal clusters, both of them result in a large amount of computations. To achieve
the online response in large-scale datasets, the prototype is implemented in a cluster
architecture to improve the degree of parallelism and accelerate the similarity search.

5.2 Implementation

In this section, we describe how to implement Osprey in a cluster with emphasis on
maximizing the degree of parallelisms to improve the efficiency of heterogeneous
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Fig. 6 The implementation of Osprey, a Spark-based analytics engine is used in the pre-processing part,
and the trajectories are saved into a database named Phoniex, which based on HBase

similarity search. To this end, we organize Osprey into several physical modules as
illustrated in Fig. 6 where an analysis engine is implemented in the data pre-processing
component, which could format and store data to a database, and the query processing,
running at the query processing part, is implemented between the database and client.

For the data pre-processing component, a Spark-based analytics engine is used for
data pre-processing. We use a module, called Spark-SQL, which can connect to the
database and perform data reading and writing directly, and the raw data are stored in
Parquet format and processed in memory in the form of dataframe.

In order to implement an online search system, we deliberately choose a distributed
database system (DDBS) as the storage substrate. At present, there are many popular
distributed storage, such as HBase [37], Greenplum [38], InfluxDB [39], etc.. After
comprehensive comparison of their performance and scenario supports, we adopt
a SQL on HBase architecture for the data storage in our prototype. Among various
plugins for SQL on HBase, we select Phoenix [27], which is widely used to sufficiently
support for SQL, as our implementation framework. For HBase and Phoenix, the
design of rowkey is crucial because the fastest conditional range query in HBase
is a rowkey-based scan operation. Therefore, the design of rowkey includes all the
conditions to be queried.

Considering that the partitioned spatial plane is invariant and the temporal range is
evolved, we put the spatial information in front of the temporal information. Moreover,
the most recent data is usually those that are most likely to be queried, so the time
instances in reverse order are designed as the index of the temporal information. Let
tindex = MaxValue — Timestamp (MaxV alue is the maximum whose number
of digits is identical to the timestamp). Finally, to avoid the duplicates of rowkey, it’s
necessary to concatenate ¢id at the end of the rowkey, i.e., RowKey = cid+tindex+tid.
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Table 1 Database table fields of

the trajectories saved in Phoenix Field Description
rk Rowkey
cid Cluster ID
locy Location on x
locy Location on y
ts Collected time
tid Trajectory ID
bits Self-information entropy
cnte The number of tid occurrences in a

query spatial-temporal cluster

In summary, the database fields include rowkey and cid. In general, the data is not
evenly distributed across the space, so a hotspot problem is inevitable if cid is used
as the prefix of rowkey. To solve this problem and make the calculation in parallel,
the rowkeys are scattered as widely as possible. Since the Phoenix is used as the data
storage, we can use SQL for data retrieval. The final fields of the database table in our
implementation are listed in Table 1.

6 Empirical studies

In this section, we conducted empirical studies to evaluate the Osprey framework in
terms of its accuracy (we defined it in Sect. 6.2) and latency (the time it takes to get
a response after a query is submitted). First, we introduced the experimental setups
and overviewed the profile of the selected trace data, then we designed experiments to
study the effects of the proposed cluster algorithm, followed by evaluating its accuracy
and analyzing the results. After that, we evaluated the latency of Osprey to show how
the online performance is achieved. As our work is the first to study the heterogeneous
search based on city metro WiFi positioning data and metro WiFi connection data, it
lacks the exact studies as references for fair comparison. Thus, in these experiments,
we focused squarely on the proposed approaches in terms of its characteristics per se.
Our empirical study results show that Osprey has high accuracy about more than 0.7
in heterogeneous similarity search with quick response (less than 4s in most cases)
for large-scale datasets.

6.1 Experimental setups

6.1.1 Testbed configurations

We set up a testbed based on the Osprey prototype as an 8-server cluster, each being
configured with 8 cores Xeon E5-2620 v4 processors and 32 GB DRAM, and inter-

connected by a 10Gbps network. Among the 8 servers, we installed Spark2.0 on
three of them, with two workers and one master, to perform the pre-processing phase.
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On the other hand, we implemented the query program in Scala2.11, deployed on a
client server, and set up a restful HTTP interface to submit the test query. Finally, we
installed Phoenix on HBasel.3 with another three Region Servers and one Hmaster
on the remaining four servers. For the dataset distribution, we also set parameter
SALT_BUCKET in HBase as 20, which means partitioning the dataset based on 20
regions, a reasonable value for our testbed.

Again, the preference of similarity on different indicators depends on dataset char-
acteristics and user’s favorites. And we can learn the coefficients from historical trace
data for certain scenarios to improve the accuracy, but this is beyond the scope of this
paper. As a typical case without any preference for the indicators as in our settings,
we gave equal weights to each metric.

6.1.2 Trace data profile

We use two datasets in the experiment to verify the model. A publicly available small-
scale dataset (1) is used to validate the accuracy of Osprey in the first experiment and
compared with other baseline algorithms (K-Means, DBSCAN). To simulate hetero-
geneous search, we randomly sample trajectories from the dataset and add some noise
as the query sequence; Another large-scale dataset (2) is used to evaluate the perfor-
mance of Osprey. It contains two types of data collected from two different sensor
systems: the smaller-scale WIFI connection data is used as the query set, and the WIFI
position data is stored in Osprey.

(1) T-Drive trajectory sample data [40, 41]: This is a sample of T-Drive trajectory
dataset that contains a one-week trajectories of 10, 357 taxis in Beijing, China. The
total number of points in this dataset is about 15 million and the total distance of
the trajectories reaches 9 million kilometers. The format of dataset D is in a form of
L(taxild, x, y, t), which is consistent with our previous definition in Definition 2.

(2) WIFI position data: We used the trace data collected by a WIFI positioning
system that locates the MACs of mobile devices through the WIFIs in the metro
stations of Shenzhen, metropolitan city in south China [42]. The format of dataset
D is in a form of L(MAC, x, y, t). The collected records an average of 24 million
per day, and we used a dataset of half a year (from 2018/09/01 to 2019/03/31) in the
experiments, with a total number of 4.3 billion records. The total number of different
MAC:s is about 22 million, and the average number of MACs is 3.2 millions per day.

6.2 Similarity model accuracy

The accuracy of the similarity model could be affected by many factors. We are
particularly interested in the cor-relationships between the similarity accuracy and the
proposed clustering algorithm. To this end, we designed an experiment to evaluate the
accuracy of Osprey.

We firstly applied different clustering algorithms to conduct spatial discretization of
T-Drive data whereby the influences of K-Means, DBSCAN, and the spectral clustering
algorithm we developed are compared. Also, we validated the improved similarity
with respect to the proposed metrics. Fig. 7 illustrates how the space is visualized
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(ours); Different colors represent different spatial clusters with a unique cluster ID

after discretized by different clustering algorithms. The adjacency-based method is
more uniform across different clusters, and thus in line with the taxi trajectory of the
real-world than the other two algorithms.

Afterward, we constructed a test dataset by deliberately adding some noise to
the originally gathered data to mimic the measurement errors of different acqui-
sition sources. To this end, original data point (¢, x, y) is revised with a uniform
random offset as (t + random(—20mins, 20mins), x + random(—0.5,0.5),y +
random(—0.5, 0.5)). Then, we randomly selected 900 trajectories as the test dataset
and sampled m (m € [2, 20]) collection points on each trajectory as the input to verify
whether the 7id found by the similarity search is the same or not as the input. For
the sufficiency of the experiment, we further conducted a total of 6 independent test
groups. Each group contains 900 different query trajectories, and the distribution of
the trajectory size in each group is shown in the boxplots in Fig.8, where Group5
increases the size of input trajectories while Group4 and 6 reduce it.

We modified two advanced algorithms—BDS [4] and TPDC [12]—as baselines
to evaluate Osprey. The two algorithms are designed to compute the similarity of the
trajectory sets in an offline way, their latencies are much greater than that of the near
real-time Osprey (usually more than 200s on the million-scale dataset). Hence, these
two algorithms are not comparable to the proposed framework in terms of system over-
head. We simplified these two algorithms with focus on using the similarity function
of the two algorithms for the heterogeneous similarity search. Notably, the search goal
is also to find the most similar trajectory to the query trajectory in different domains.
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Fig.9 Comparison of accuracy between Osprey and the two modified algorithms. The x-axis of each figure
is the offset of random deviation in time, and the y-axis is the accuracy

To investigate the impact of the time error caused by heterogeneity on the search
accuracy, we set the random offset range of time from 0 minute to 30 minutes, a
reasonable range to cover the duration of one taxi trip. We compared the accuracy of
the these algorithms whose results are shown in Fig. 9. One can see that the accuracies
of all the algorithms are roughly the same when the minor error in time, while all
the accuracies decrease as the random offset of time increases, whereby the reduction
of Osprey’s accuracy is more moderate than others. The results show that Osprey
achieves higher accuracy in case of a significant error on time offset than the other
compared algorithms, which indicates it is more applicable for the heterogeneous
similarity search scenarios.

The results of the another comparison experiment are shown in Fig. 10 where
the accuracy of the three compared algorithms—the proposed spectral clustering,
DBSCAN and K-Means are compared. From these test groups, one can observe that
the proposed spectral clustering is the best in accuracy, which is better than DBSCAN
about 2%, and K-Means about 3%, respectively. When the number of sampling points
increases, the corresponding accuracy will also be improved accordingly, and the
gap between the spectral clustering and the other two algorithms become smaller
(Group5). This is not surprisingly as when the input samples are increasingly sufficient,
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the information will gradually become rich to achieve high accuracy, which would
relatively weaken the effects of algorithm optimization.

In Group4 and 6, When fewer sampling points are input, the corresponding accuracy
decreases. In this case, our method exhibits more relatively obvious advantages, the
accuracy is about 5% higher than that of K-Means. Meanwhile, these groups show
that our propose metrics could effectively improve the accuracy over simple method
(maximum number of occurrences), with the improvements increasing from 1 to 9%
as the number of sample points decreases, which means the improvement can be
increased even more for fewer data. This is because the metrics we proposed for this
case can effectively score and sort the trajectories with the same occurrences in the
results, and select the most similar trajectory. The experiment shows that the accuracy
of our method is not only better than that of the compared methods, but also effective
to improve the accuracy of similarity search with less data, and has better robustness
for the situation when the data is in shortage.

In the other experiment, we first obtained the trajectories of targets based on some
metro WiFi positioning method, and then made samples from the sequences obtained
by an WIFI connection system as input to verify whether the #id (i.e., MAC address)
with the highest similarity is the target. To this end, we collected 13, 629 test data points
from the WIFI connection system. Given the collection rates are different between
these two WiFi devices, and also the information gathered by each individual device
is divergent, the distribution of data collected by WIFI connection system would be
quite different from that by WIFI positioning system. As a result, a large number of
data items collected by the WIFI connection system are possible not collected by the
WIFI positioning system, reflecting the heterogeneity of the data sources.
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Fig. 11 Correlation between similarity and accuracy

Figure 11aillustrates that how the similarity distribution of the matched trajectories
is higher than that of the non-matched trajectories when a query trajectory is given,
also how the similarity increases with the increase of the number of spatial-temporal
clusters. The results not only indicate that it is feasible to identify the target ti d based on
our similarity search, but also reveal that the current heterogeneous similarity depends
on the number of the input clusters.

Additionally, we also evaluated the relationship between similarity and accuracy
as shown in Fig. 11b where one can see (from the broken line diagram) that with the
improvements of the similarity, the accuracy increases significantly as well, indicating
that the accuracy of our heterogeneous similarity model can be improved by providing
more multi-spatial-temporal clusters.

6.3 System overhead

As the similarity search is often performed online, low latency is always highly desired.
In this section, we conducted experiments to evaluate the query processing in Osprey.
By adjusting different input data sizes, the overhead of Osprey in term of latency and
the accuracy of the algorithm can be evaluated. To this end, we designed three queries
to study the relationships between the latency of retrieving trajectory data and the
amount of stored data. We sampled three sequences from a trajectory as input, and the
time range of each spatial-temporal cluster is selected as 10 minutes while the number
of spatial-temporal clusters is configured by 2, 5, and 10, and named Q1, Q2, and Q3
respectively. The number of input query clusters and the corresponding number of the
result sets are shown in Table 2.

As shown in Fig. 12a, there is a linear relationship between the latency and the
number of the query result sets as well as the number of records stored in the database.
With the increase of the amount of data, the computation of traditional similarity
search quadratically grows with respect to the number of records as they need pairwise
comparison between the records. However, given the similarity search in parallel, the
computation of Osprey is more efficient since as the number of records grows up, its
latency increases linearly at large. Since the spatial-temporal data will be increasing
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Table 2 The number of the

clusters and resultsets Query type Clusters Resultsets
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Fig. 12 Comparison of system overhead

continuously with the duration of the system running time, the property of linear
growth is valuable for the application of Osprey.

After that, we inserted all the data into the database—a total of 4.3 billion items. We
deployed the similarity calculation model, so the response time increased slightly. In
order to introduce more interference to study the performance of Osprey in response
time and analyze the accuracy of the similarity model, we varied the time range in
[observedpoints — 10 min, observedpoints 4+ 10min], implying a spatial-temporal
cluster lasting 20 minutes.

The scatter diagram in Fig. 12b shows that the latency is approximately linear
(pearson = 0.75) increase with the number of input clusters, and most of the latency
is within 4s. As such, we can conclude that the Osprey design effectively improves
the computing performance of the system for large-scale datasets, which as a result
meets the requirements for a online search system.

7 Conclusions

In this paper, we designed the spatial-temporal cluster through a spectral clustering
algorithm, which samples the adjacency based on historical trajectories, to improve
the latency and accuracy in the heterogeneous similarity search. Afterward, we built
a model that combines three designed metrics to measure the similarity of spatial-
temporal clusters rather than using traditional distance metrics to improve the accuracy
in the online query processing phase. Finally, to accelerate the computation and vali-
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date the latency and accuracy of our concept, we implemented a system, called Osprey,
based on a distributed database and investigated its performance through extensive
experiments on billions of multi-source heterogeneous trajectories.

Osprey is a heterogeneous similarity search framework designed for large-scale
data sets, which provides low-latency and high-accuracy similarity search services.
By using set theory and probability theory, Osprey can perform well with sufficient
historical data. However, in the case of data at small-scale, the proposed method barely
attains more precision similarity than the fine-grained alignment distance methods,
which could be another topic deserving our more studies.
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